[1] Shi Y, Yu Z W, Man J G, Ma S Y, Gao Z Q, Zhang Y L. Tillage practices affect dry matter accumulation and grain yield in winter wheat in North China Plain. Soil Till Res, 2016, 160: 73–81
[2] Kong L A. Maize residues, soil quality, and wheat growth in China: a review. Agron Sust Dev, 2014, 34: 405–416
[3] 聂良鹏, 郭利伟, 牛海燕, 魏杰, 李增嘉, 宁堂原. 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响. 作物学报, 2015, 41: 468–478
Nie L P, Guo L W, Niu H Y, Wei J, Li Z J. Effects of rotational tillage on tilth soil structure and crop yield and quality in maize – wheat cropping system. Acta Agron Sin, 2015, 41: 468–478 (in Chinese with English abstract)
[4] 赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响. 应用生态学报, 2015, 26: 1785–1792
Zhao Y L, Guo H B, Xue Z W, Mu X Y, Li C H. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield. Chin J Appl Ecol, 2015, 26: 1785–1792 (in Chinese with English abstract)
[5] Zhu H, Wu J, Huang D, Zhu Q, Liu S, Su Y. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw. Plant Soil, 2010, 331: 427–437
[6] Wei T, Zhang P, Wang K, Ding R X, Yang B P, Nie J F, Jia Z K, Han Q F. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One, 2015, 10: e0120994
[7] Zhang P, Chen X L, Wei T, Yang Z, Jia Z K, Yang B P, Han, Q F, Ren X L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Till Res, 2016, 160: 65–72
[8] Zhao S C, Li K J, Zhou W, Qiu S J, Huang S W, He P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric, Ecosyst Environ, 2016, 216: 82–88
[9] Jiang Y J, Sun B, Jin C, Wang F. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biol Biochem, 2013, 60: 1–9
[10] Lou Y, Xu M, Wang W, Sun X, Zhao K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Till Res, 2011, 113: 70–73
[11] Dolan M, Clapp C, Allmaras R, Baker J, Molina J. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Till Res, 2006, 89: 221–231
[12] Tong X, Xu M, Wang X, Bhattacharyya R, Zhang W, Cong R. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena, 2014, 113: 251–259
[13] Piovanelli C, Gamba C, Brandi G. Tillage choices affect biochemical properties in the soil profile. Soil Till Res, 2006, 90: 84–92
[14] 田慎重, 宁堂原, 王瑜, 李洪杰, 仲惟磊, 李增嘉. 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响. 应用生态学报, 2010, 21: 373–378
Tian S Z, Ning T Y, Wang Y, Li H J, Zhong W L, Li Z J. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field. Chin J Appl Ecol, 2010, 21: 373–378 (in Chinese with English abstract)
[15] 赵鹏, 陈阜. 秸秆还田配施化学氮肥对冬小麦氮效率及产量的影响. 作物学报, 2008, 34: 1014–1018
Zhao P, Chen F. Effects of straw mulching plus nitrogen fertilizer on nitrogen efficiency and grain yield in winter wheat. Acta Agron Sin, 2008, 34: 1014–1018 (in Chinese with English abstract)
[16] 鲁如坤. 土壤农业化学分析方法.北京: 中国农业科技出版社, 1999, pp 106–195
Lu R K. Analytical Methods of Soil and Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 106–195 (in Chinese)
[17] 丁建莉, 蒋昕, 关大伟, 马鸣超, 赵百锁, 周宝库, 曹凤鸣, 李力, 李俊. 东北黑土微生物群落对长期施肥及作物的响应. 中国农业科学, 2016, 49: 4408–4418
Ding J L, Jiang X, Guan D W, Ma M C, Zhao B S, Zhou B K, Cao F M, Li L, Li J. Responses of micro-population in black soil of Northeast China to long-term fertilization and crops. Sci Agric Sin, 2016, 49: 4408–4418 (in Chinese with English abstract)
[18] 曾希柏, 王亚男, 王玉忠, 林志灵, 李莲芳, 白玲玉, 苏世鸣, 沈灵凤. 不同施肥模式对设施菜地细菌群落结构及丰度的影响. 中国农业科学, 2013, 46: 69–79
Zeng X B, Wang Y N, Wang Y Z, Lin Z L, Li L F, Bai L Y, Su S M, Shen L F. Effects of different fertilization regimes on abundance and composition of the bacterial community in greenhouse vegetable soils. Sci Agric Sin, 2013, 46: 69–79 (in Chinese with English abstract)
[19] Gong W, Yan X Y, Wang J Y, Hu T X, Gong Y B. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China. Geoderma, 2009, 149: 318–324
[20] Gude A, Kandeler E, Gleixner G. Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biol Biochem, 2012, 47: 209–219
[21] Li X J, Zhang Z G. Influence on soil floods properties of mulching straws and soil returning straw. Territory and Resour Study, 1999, 1: 43–45
[22] Martens D, Johanson J, Frankenberger J R. Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci, 1992, 153: 53–61
[23] Luo X S, Fu X Q, Yang Y, Cai P, Peng S B, Chen W L, Huang Q Y. Microbial communities play important roles in moderating paddy soil fertility. Sci Rep, 2016, 6: 20326
[24] Bandick A, Dick R. Field management effects on soil enzyme activities. Soil Biol Biochem, 1999, 31: 1471–1479
[25] Zhu LQ, Hu N J, Yang M F, Zhan X H, Zhang Z W. Effects of different tillage and straw return on soil organic carbon in a rice–wheat rotation system. PloS One, 2014, 9: e88900
[26] Haynes R, Beare M. Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol Biochem, 1997, 29: 1647–1653
[27] Pinheiro E, Pereira M, Anjos L. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Till Res, 2004, 77: 79–84
[28] Alidad K, Mehdi H, Sadegh A, Hassan R, Sanaz B. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric, Ecosyst Environ, 2012, 148: 22–28
[29] Paul B K, Vanlanwe B, Ayuke F, Gassner A, Hoogmoed M, Hurisso T T, Koala S, Lelei D, Ndabamenye T, Six J, Pulleman M M. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agric, Ecosyst Environ, 2013, 164: 14–22
[30] He Y T, Zhang W J, Xu M G, Tong X G, Sun F X, Wang J Z, Huang S M, Zhu P, He X H. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Sci Total Environ, 2015, 532: 635–644
[31] Burns R G., DeForest J L, Marxsen J, Sinsabaugh R L, Stromberger M E, Wallenstein M D, Weintraub M N, Zoppini A. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem, 2013, 58: 216–234
[32] Tiemann L K, Billings S A. Indirect effects of nitrogen amendments on organic substrate quality increase enzymatic activity driving decomposition in a mesic grassland. Ecosystems, 2011, 14: 234–247
[33] Cusack D F, Silver W L, Torn M S, Burton S D, Firestone M K. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology, 2011, 92: 621–632
[34] 贾伟, 周怀平, 解文艳, 关春林, 郜春花, 石彦琴. 长期有机无机配施对褐土微生物量碳、氮及酶活性的影响. 植物营养与肥料学报, 2008, 14: 700–705
Jia W, Zhou H P, Xie W Y, Guan C L, Gao C H, Shi Y Q. Effects of long-term inorganic fertilizer combined with organic manure on microbial biomass C、N and enzyme activity in cinnamon soil. Plant Nutr Fert Sci, 2008, 14: 700–705 (in Chinese with English abstract)
[35] 隽英华, 孙文涛, 韩晓日, 邢月华, 王立春, 谢佳贵. 春玉米土壤矿质氮累积及酶活性对施氮量的响应. 植物营养与肥料学报, 2014, 20: 1368–1377
Juan Y H, Sun W T, Han X R, Xing Y H, Wang L C, Xie J G. Response of soil mineral nitrogen accumulation and enzyme activities to nitrogen application in spring maize. J Plant Nutr Fert, 2014, 20: 1368–1377 (in Chinese with English abstract)
[36] Dong W, Zhang X, Wang H, Dai X, Sun X, Qiu W. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PloS One, 2012, 7: e44504
[37] Zhang P, Wei T, Jia Z, Han Q, Ren X, Li Y. Effects of straw incorporation on soil organic matter and soil water-stable aggregates content in semiarid regions of Northwest China. PLoS One, 2014; 9: e92839
[38] Tripathy R, Singh A. Effect of water and nitrogen management on aggregate size and carbon enrichment of soil in rice-wheat cropping system. J Plant Nutr Soil Sci, 2004, 167: 216–228
[39] Alidad K, Mehdi H, Sadegh A, Hassan R, Sanaz B. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric, Ecosyst Envrion, 2012, 148: 22–28
[40] Wang X H, Yang H S, Liu J, Wu J S, Chen W P, Wu J, Zhu L Q, Bian X M. Effects of ditch-buried straw return on soil organic carbon and rice yields in a rice-wheat rotation system. Catena, 2015, 127: 56–63
[41] 郑成岩, 崔世明, 王东, 于振文, 张永丽, 石玉. 土壤耕作方式对小麦干物质生产和水分利用效率的影响. 作物学报, 2011, 37: 1432–1440
Zheng C Y, Cui S M, Wang D, Yu Z W, Zhang Y L, Shi Y. Effects of soil tillage practice on dry matter production and water use efficiency in wheat. Acta Agron Sin, 2011, 37: 1432–1440 (in Chinese with English abstract)
[42] 孔凡磊, 袁继超, 张海林, 陈阜. 耕作方式对华北两熟区冬小麦生长发育和产量的影响. 作物学报, 2013, 39: 1612–1618
Kong F L, Yuan J C, Zhang H L, Chen F. Effect of tillage practice on growth and development and yield of winter wheat in double cropping area in North China. Acta Agron Sin, 2013, 39: 1612–1618 (in Chinese with English abstract)
[43] 孔凡磊, 陈阜, 张海林, 黄光辉. 轮耕对土壤物理性状和冬小麦产量的影响. 农业工程学报, 2010, 26(8): 150–155
Kong F L, Chen F, Zhang H L, Huang G H. Effects of rotational tillage on soil physical properties and winter wheat yield. Trans CSAE, 2010, 26(8): 150–155 (in Chinese with English abstract)
[44] 蒋向, 贺德先, 任洪志, 刘清瑞, 胡敏. 轮耕对麦田土壤容重和小麦根系发育的影响. 麦类作物学报, 2012, 32: 711–715
Jiang X, He D X, Ren H Z, Liu Q R, Hu M. Effects of different patterns of rotational tillage on soil bulk density in wheat field and wheat root development. J Triticeae Crops, 2012, 32: 711–715 (in Chinese with English abstract)
[45] Tian S, Ning T, Zhao H, Wang B, Li N, Han H, Li Z, Chi S. Response of CH4 and N2O emissions and wheat yields to tillage method changes in the North China Plain. PLoS One, 2012, 7: e51206
[46] Tian S Z, Wang Y, Ning T Y, Li N, Zhao H X, Wang B W, Li Z J, Chi S Y. Continued no-till and subsoiling improved soil organic carbon and soil aggregation levels. Agron J, 2014, 106: 212–218
[47] Luo Z K, Wang E L, Sun O J Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ, 2010, 139: 224–231 |