欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (03): 463-470.doi: 10.3724/SP.J.1006.2018.00463

• 研究简报 • 上一篇    

茶树叶片和胚根原生质体的分离及PEG诱导融合

彭章1,2(), 童华荣1, 梁国鲁3, 石艺琦1, 袁连玉1,*()   

  1. 1西南大学食品科学学院, 重庆400715
    2食品科学与工程国家级实验教学示范中心(西南大学), 重庆 400715
    3西南大学园艺园林学院, 重庆 400715
  • 收稿日期:2017-07-28 接受日期:2018-11-21 出版日期:2018-03-12 网络出版日期:2017-12-18
  • 通讯作者: 袁连玉
  • 作者简介:

    969979310@qq.com

  • 基金资助:
    本研究由国家自然科学基金青年项目(31400583), 国家级大学生创新创业训练计划项目(201610635041)和重庆市基础与前沿研究计划一般项目(cstc2014jcyjA80011)资助

Protoplast Isolation and Fusion Induced by PEG with Leaves and Roots of Tea Plant (Camellia sinensis L. O. Kuntze)

Zhang PENG1,2(), Hua-Rong TONG1, Guo-Lu LIANG3, Yi-Qi SHI1, Lian-Yu YUAN1,*()   

  1. 1 College of Food Science, Southwest University, Chongqing 400715, China
    2National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
    3 College of Food Science, Southwest University, Chongqing 400715, China
  • Received:2017-07-28 Accepted:2018-11-21 Published:2018-03-12 Published online:2017-12-18
  • Contact: Lian-Yu YUAN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31400583), National Training Program of Innovation and Entrepreneurship for Undergraduates (201610635041), and the Basic and Frontier Research Program of Chongqing (cstc2014jcyjA80011).

摘要:

植物原生质体是细胞培养和体细胞融合等细胞水平研究及植物遗传育种的重要材料。本研究用福鼎大白茶茶树的幼嫩叶片及胚根, 分析了原生质体分离过程中的材料、酶解液组成及酶解时间、纯化方法等影响因子, 建立了最佳原生质体分离体系, 为茶树体细胞杂交等细胞水平的研究提供了高效获取大量高活力原生质体的方法。结果表明, 23°C恒温黑暗或遮光培养的茶树实生苗的5周叶龄以内的幼嫩叶片是茶树原生质体分离的最佳材料, 其次是茶树种子萌发后的幼嫩胚根; 而以茶园健康生长的5周叶龄以内的幼嫩叶片为材料时, 只能获得混有大量细胞碎片的少量具有活力的原生质体。以茶树幼嫩叶片为分离材料的酶解液组成为1.5%纤维素酶+0.1%离析酶+0.5%果胶酶+0.4 mol L-1甘露醇+20 mmol L-1 MES; 以茶树幼嫩胚根为分离材料的酶解液组成为1.5%纤维素酶+0.3%离析酶+0.5%果胶酶+0.4 mol L-1甘露醇+20 mmol L-1 MES。分离茶树幼嫩叶和幼嫩胚根原生质体时, 宜采用低速(分别为55 r min-1和50 r min-1)恒温(23°C)摇床振荡酶解培养, 时间分别为7 h和8 h; 最适宜采用15×g的转速, 离心4 min可纯化获得高产量和活力的原生质体。用40% PEG-6000诱导20 min后可使茶树原生质体融合, 融合率达10%。

关键词: 茶树, 幼嫩叶, 幼嫩胚根, 原生质体分离, 原生质体融合

Abstract:

Plant protoplasts are important materials for studies on plant cell culture, somatic cell fusion, genetics and breeding. This work established a stable and efficient method for getting a large amount of vital and intact protoplasts from young leaves and young roots of Fudingdabai tea plant. For protoplast isolation, the young leaves of tea seedlings grown in the condition of constant temperature (23°C) and dark or shading were the best materials, and the young radicle of tea plant was also the better, While the healthy young leaves of tea plants grown in tea plantation were used as materials, only a small quantity of viable protoplasts mixed with a large number of cell fragments were obtained. The optimal enzyme solution for protoplasts isolation from young leaves of tea seedlings contained 1.5% cellulase + 0.1% macerozyme + 0.5% pectolyase + 0.4 mol L-1 mannitol + 20 mmol L-1 MES, and that from radicle of tea seedlings contained 1.5% cellulase + 0.3% macerozyme + 0.5% pectolyase + 0.4 mol L-1 mannitol + 20 mmol L-1 MES. Protoplasts with high yield and viability were purified when incubated in a shaker with low speed (55 r min-1 and 50 r min-1 respectively) under constant temperature (23°C) for 7 h and 8 h, and then centrifuged at 15×g for 4 min. PEG-6000 was used to induce the fusion of protoplasts from young leaves and radicle of tea plants. The fusion time, the concentration of fusion agent PEG-6000 were discussed. The optimal protoplast infusion conditions were induction with 40% PEG-6000 for 20 min, and the fusion rate was about 10%.

Key words: Camellia sinensis, young leaf, young root, protoplast isolation, protoplast fusion

图1

茶树不同材料的选择及处理 A: 种子萌发产生的幼嫩胚根; B: 正常茶园生长的茶树的一芽三叶; C: 黑暗处理的茶树幼嫩实生苗; D: 切割后的叶片; E: 酶解液消化后的叶片。"

图2

不同材料分离获得的茶树原生质体 CK: 分离自拟南芥的叶片; A: 分离自黑暗处理的茶树幼嫩实生苗的幼嫩叶; B: 分离自种子萌发产生的幼嫩胚根; C: 分离自正常茶园生长的茶树的一芽三叶。"

图3

茶树嫩叶原生质体产量计数及活力检测 CK: 以拟南芥幼嫩叶片为材料分离获得的原生质体的产量(0.25 mm×0.25 mm方格); A: 以茶树幼嫩叶片为材料分离获得的原生质体的产量(视野1, 0.25 mm×0.25 mm方格); B: 以茶树幼嫩叶片为材料分离获得的原生质体的产量(视野2, 0.25 mm×0.25 mm方格); C: 用台盼蓝染色的方法检测分离获得的茶树原生质体活力。"

表1

不同酶解液组合对分离茶树嫩叶原生质体的影响"

处理
Treatment
酶解液浓度 Concentration of enzyme (%) 产量
Yield (×106 g-1 FW)
活力
Viability (%)
纤维素酶 Cellulase 离析酶 Macerozyme 果胶酶 Pectolase
1 1.4 0.1 0.5 6.8 70
2 1.5 0.1 0.5 8.8 88
3 1.6 0.1 0.5 7.2 75
4 1.5 0 0.5 2.4 50
5 1.5 0.3 0.5 7.6 80
6 1.5 0.1 0.1 3.6 60
7 1.5 0.1 0.3 8.0 85
8 1.5 0.1 0.7 6.0 65

表2

不同酶解液组合对分离茶树胚根原生质体的影响"

处理
Treatment
酶解液浓度 Concentration of enzyme (%) 产量
Yield (×106 g-1 FW)
活力
Viability (%)
纤维素酶 Cellulase 离析酶 Macerozyme 果胶酶 Pectolase
1 1.4 0.3 0.5 2.8 83
2 1.5 0.3 0.5 3.2 89
3 1.6 0.3 0.5 3.0 85
4 1.5 0 0.5 1.0 50
5 1.5 0.1 0.5 2.4 75
6 1.5 0.3 0.3 2.0 70
7 1.5 0.3 0.7 2.4 76

表3

不同酶解时间对茶树叶片原生质体的产量和活力的影响"

酶解时间
Enzymolysis time
(h)
原生质体数
Protoplast count
(×106 g-1 FW)
活力
Viability
(%)
6 6.8 80
7 8.8 88
8 8.0 75
9 6.0 50

表4

酶解液渗透压对分离茶树原生质体的影响"

酶解液编号
Enzyme solution number
甘露醇浓度
Mannitol concentration
(mol L-1)
原生质体形态
Protoplast morphology
1 0.3 原生质体呈浑圆状态, 约70%以上的是完整原生质体, 但细胞碎片及细胞器较多
Protoplasts were rounded, about 70% of protoplasts were intact, but there were a lot of cell debris and organelles
2 0.4 原生质体呈浑圆状态, 约85%以上是完整原生质体, 且细胞碎片及细胞器较少
Protoplasts were rounded, about 85% of them were intact, and only a small amount of cell debris and organelles existed
3 0.5 较正常原生质体体积缩小, 略有皱褶
Compared with normal protoplasts, the protoplast size was smaller and slightly wrinkled

图4

茶树原生质体的融合 A: 茶树幼嫩叶片原生质体的融合过程; B: 茶树幼嫩胚根原生质体的融合过程。"

[1] Nanjareddy K, Arthikala M K, Blanco L, Elizabeth S A, Miguel L.Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol, 2016, 16: 53
[2] Rehman L, Su X F, Guo H M, Qi X L, Cheng H M.Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnol, 2016, 16: 57
[3] Burris K P, Dlugosz E M, Collins A G, Stewart C N, Lenaghan S C.Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep, 2016, 35: 693-704
[4] Larkin P J, Scowcroft W R.Somaclonal variation: a novel source of variability from cell-cultures for plant improvement. Theor Appl Genet, 1981, 60: 197-214
[5] Cocking E C.Method for the isolation of plant protoplasts and vacuoles.Nature, 1960, 187: 962-963
[6] 彭邵锋, 陆佳, 陈永忠, 王瑞, 陈隆升, 马力, 王湘南. 木本植物原生质体培养体系研究进展. 中国农学通报, 2013, 29(1): 1-6
Peng S F, Lu J, Chen Y Z, Wang R, Chen L S, Ma L, Wang X N.Research progress of protoplast culture in woody plants.Chin Agric Sci Bull, 2013, 29(1): 1-6 (in Chinese with English abstract)
[7] 王善平, 许智宏. 木本植物的原生质体培养. 细胞生物学杂志, 1989, (1): 14-18
Wang S P, Xu Z H.Protoplast culture of woody plants.J Cell Biol, 1989, (1): 14-18 (in Chinese)
[8] Liu J H, Xu X Y, Deng X X.Protoplast isolation, culture and application to genetic improvement of woody plants.J Food Agric Environ, 2003, 1: 112-120
[9] Vardi A, Spiegelroy P, Galun E.Citrus cell culture: isolation of protoplasts, plating densities, effect of mutagens and regeneration of embryos.Plant Sci Letters, 1975, 4: 231-236
[10] Mattoo A, Lieberman M.Localization of the ethylene-synthesizing system in apple tissue.Plant Physiol, 1977, 60: 794-799
[11] Ochatt S J, Caso O H.Shoot regeneration from leaf mesophyll protoplasts of wild pear (Pyrus-communis var. Pyraster L.). J Plant Physiol, 1986, 122: 243-249
[12] 羿德磊. 桑树原生质体分离及融合的研究. 山东农业大学硕士学位论文, 山东泰安, 2012
Yi D L.Study on Protoplast Isolation and Fusion of Mulberry. MS Thesis of Shandong Agricultural University, Tai’an, China, 2012 (in Chinese with English abstract)
[13] 俞长河, 陈振光, 吕柳新. 荔枝原生质体培养再生植株. 福建农业大学学报, 1996, 25(03): 386
Yu C H, Chen Z G, Lyu L X.Regeneration of plantlets from protoplasts culture of Litchi.J Fujian Agric Univ, 1996, 25(03): 386 (in Chinese with English abstract)
[14] 林顺权, 陈振光. 枇杷原生质体培养再生植株. 福建农业大学学报, 1994, 23(1): 125
Lin S Q, Chen Z G.Plant regeneration from protoplast of Loquat.J Fujian Agric Univ, 1994, 23(1): 125 (in Chinese with English abstract)
[15] 马锋旺, 李嘉瑞. 中国李原生质体培养及植株再生. 西北农业大学学报, 1999, 27(03): 64-68
Ma F W, Li J R.Protoplast culture and plant regeneration of Chinese plum.Acta Univ Agric Boreali-Occident, 1999, 27(03): 64-68 (in Chinese with English abstract)
[16] 何业华, 胡芳名, 谢碧霞, 何钢, 胡中沂. 枣树原生质体培养及其植株再生. 中南林学院学报, 1999, (03): 29-31
He Y H, Hu F M, Xie B X, He G, Hu Z Y.Protoplast culture of Zizyphus jujube and plant individual regeneration. J Central South For Univ, 1999, (03): 29-31 (in Chinese with English abstract)
[17] 马锋旺, 李嘉瑞. 山杏原生质体培养再生植株. 园艺学报, 1998, 25: 224-229
Ma F W, Li J R.Plant regeneration from cultured protoplasts of Armeniaca vulgaris var. ansu. Acta Hortic Sin, 1998, 25: 224-229 (in Chinese with English abstract)
[18] 中村顺行, 叶乃兴. 茶树原生质体的分离. 茶叶科学简报, 1985, (1): 46-47
Nakamura A, Ye N X.Isolation of protoplasts from tea plants.Tea Sci Bull, 1985, (1): 46-47 (in Chinese)
[19] 赖钟雄, 何碧珠, 陈振光. 茶树花粉管亚原生质体的分离. 福建农业大学学报, 1998, 27(增刊): 41-44
Lai Z X, He B Z, Chen Z G.Isolation of protoplasts from pollen tubes of tea plant.J Fujian Agric For Univ, 1998, 27(suppl): 41-44 (in Chinese)
[20] 王璐, 钱文俊, 王新超, 李娜娜, 杨亚军. 一种茶树原生质体的提取方法.CN105695391A, 2016-06-22
Wang L, Qian W J, Wang X C, Li N N, Yang Y J A method for extracting protoplast from Tea plant. CN105695391A, 2016-06-22 (in Chinese)
[21] 杨子银, 梅鑫, 周瀛, 傅秀敏. 一种茶树花原生质体及其制备方法和应用. CN105670985A, 2016-06-15
Yang Z Y, Mei X, Zhou Y, Fu X M. The preparation method and application of flower tea protoplast. CN105670985A, 2016-06-15 (in Chinese)
[22] Davey M R, Anthony P, Power J B, Kenneth C L.Plant protoplasts: status and biotechnological perspectives.Biotechnol Adv, 2005, 23: 131-171
[23] Liu J H, Xu X Y, Deng X X.Intergeneric somatic hybridization and its application to crop genetic improvement.Plant Cell Tissue Organ Cult, 2005, 82: 19-44
[24] Guo W W, Zhou C H, Yi H L, Deng X X.Intergeneric somatic hybrid plants between Citrus and Poncirus trifoliata and evaluation of their root rot resistance. Acta Bot Sin, 2000, 42: 668-672
[25] Liu J H, Hu C G, Deng X X.Regeneration of diploid intergeneric somatic hybrid plants between Microcitrus and Citrus via electrofusion. Acta Bot Sin, 1999, 41: 1177-1182
[26] Revilla M A, Ochatt S J, Doughty S, Power J B.A general strategy for the isolation of Mesophyll protoplasts from deciduous fruit and nut tree species.Plant Sci, 1987, 50: 133-137
[27] Dovzhenko A, Dal Bosco C, Meurer J, Koop H U.Efficient regeneration from cotyledon protoplasts in Arabidopsis thaliana. Protoplasma, 2003, 222: 107-111
[28] Sinha A, Wetten A C, Caligari P D S. Optimisation of protoplast production in White Lupin.Biol Plant, 2003, 47: 21-25
[29] Yoo S D, Cho Y H, Sheen J.Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565-1572
[30] Kuzminsky E, Meschini R, Terzoli S, Pavani L, Silvestri C, Choury Z, Scarascia-Mugnozza G.Isolation of mesophyll protoplasts from Mediterranean woody plants for the study of DNA integrity under abiotic stress.Front Plant Sci, 2016, 7: 1-7
[31] Tan B Y, Xu M, Chen Y, Huang M R.Transient expression for functional gene analysis usingPopulus protoplasts. Plant Cell Tissue Organ Cult, 2013, 114: 11-18
[32] Guo J, Morrell-Falvey J L, Labbe J L, Muchero W, Kalluri U C, Tuskan G A, Chen J G. Highly efficient isolation of Populus Mesophyll protoplasts and its application in transient expression assays. PLoS One, 2012, 7: e44908
[33] 李妮娜, 丁林云, 张志远, 郭旺珍. 棉花叶肉原生质体分离及目标基因瞬时表达体系的建立. 作物学报, 2014, 40: 231-239
Li N N, Ding L Y, Zhang Z Y, Guo W Z.Isolation of mesophyll protoplast and establishment of gene transient expression system in Cotton. Acta Agron Sin, 2014, 40: 231-239 (in Chinese with English abstract)
[34] 梁大伟. 拟南芥叶肉原生质体分离及瞬时表达体系的建立. 兰州大学硕士学位论文, 甘肃兰州, 2009
Liang D W.Isolation of Mesphyll Protoplast from Arabidopsis thaliana and the Setup of Transient Expression Assay System. MS Thesis of Lanzhou University, Lanzhou,China, 2009 (in Chinese with English abstract)
[35] 李文彬, 王革娇, Stanchina E, Castiglione S, 孙勇如, Sala F. PEG介导原生质体转化获得水稻转基因植株. 植物学报, 1995, 37: 409-412
Li W B, Wang G J, Stanchina E, Castiglione S, Sun Y R, Sala F.Transgenic rice plants produced by PEG-mediated plasmid uptake into protoplasts.Acta Bot Sin, 1995, 37: 409-412 (in Chinese with English abstract)
[1] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[2] 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425.
[3] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[4] 袁连玉,陈应娟,魏旭,童华荣*. 茶树金属耐受蛋白基因CsMTP11的克隆及功能分析[J]. 作物学报, 2017, 43(05): 708-717.
[5] 唐湖,郝心愿,王璐,肖斌,王新超,杨亚军. 茶树越冬芽在休眠与萌发时期的物质交流变化及其分子调控[J]. 作物学报, 2017, 43(05): 669-677.
[6] 陈林波,夏丽飞,田易萍,李梅,宋维希,梁名志,江昌俊. 基于数字基因表达谱分析的茶树花不育基因挖掘[J]. 作物学报, 2017, 43(02): 210-217.
[7] 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 .
[8] 钱文俊,岳川,曹红利,郝心愿,王璐,王玉春,黄玉婷,王博,王新超,肖斌,杨亚军. 茶树中性/碱性转化酶基因CsINV10的克隆与表达分析[J]. 作物学报, 2016, 42(03): 376-388.
[9] 王博,曹红利,黄玉婷,胡玉荣,钱文俊,郝心愿,王璐,杨亚军,王新超. 茶树生长素外运载体基因CsPIN3的克隆与表达分析[J]. 作物学报, 2016, 42(01): 58-69.
[10] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[11] 马春雷,姚明哲,王新超,金基强,马建强1陈亮. 茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达[J]. 作物学报, 2015, 41(02): 240-250.
[12] 曹红利,岳川,周艳华,王璐,郝心愿,杨亚军*,王新超*. 茶树bZIP转录因子基因CsbZIP1的克隆与表达定位[J]. 作物学报, 2014, 40(09): 1702-1709.
[13] 王丽鸳,韦康,张成才,成浩. 茶树花转录组微卫星分布特征[J]. 作物学报, 2014, 40(01): 80-85.
[14] 蒋会兵,宋维希,矣兵,李友勇,马玲,陈林波,田易萍,段志芬,刘本英,梁名志. 云南茶树种质资源的表型遗传多样性[J]. 作物学报, 2013, 39(11): 2000-2008.
[15] 岳川,曾建明,曹红利,郝心愿,章志芳,王新超,杨亚军. 茶树赤霉素受体基因CsGID1a的克隆与表达分析[J]. 作物学报, 2013, 39(04): 599-608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!