欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (6): 897-908.doi: 10.3724/SP.J.1006.2018.00897

• 耕作栽培·生理生化 • 上一篇    下一篇

表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析

王道平1,2,徐江2,牟永莹2,3,闫文秀2,3,赵梦洁3,马博3,李群1,*(),张丽娜2,3,潘映红2,3,*()   

  1. 1 新疆大学生命科学与技术学院, 新疆乌鲁木齐 830046
    2 中国农业科学院作物科学研究所, 北京 100081
    3 农作物基因资源与基因改良国家重大科学工程, 北京 100081
  • 收稿日期:2017-08-29 接受日期:2018-03-18 出版日期:2018-06-12 网络出版日期:2018-03-19
  • 通讯作者: 李群,潘映红
  • 基金资助:
    本研究由国家自然科学基金项目(31571589);国家重点基础研究发展计划(973计划)项目子课题(2015CB150401);中国农业科学院创新工程项目资助(作物分子标记技术及其应用创新团队)

Proteomic Analysis of the Effect of 2,4-Epibrassinolide on Rice Seedlings Response to Cold Stress

Dao-Ping WANG1,2,Jiang XU2,Yong-Ying MU2,3,Wen-Xiu YAN2,3,Meng-Jie ZHAO3,Bo MA3,Qun LI1,*(),Li-Na ZHANG2,3,Ying-Hong PAN2,3,*()   

  1. 1 College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-08-29 Accepted:2018-03-18 Published:2018-06-12 Published online:2018-03-19
  • Contact: Qun LI,Ying-Hong PAN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571589);the National Basic Research Program of China (973 Program)(2015CB150401);the Agricultural Science and Technology Innovation Program(作物分子标记技术及其应用创新团队)

摘要:

表油菜素内酯(2,4-Epibrassinolide, EBR)是一种被广泛研究和应用的油菜素内酯类(brassinosteroids, BRs)植物生长调节剂, 它能有效增强植物对低温的耐受性, 但EBR在蛋白质组水平上对水稻幼苗响应低温胁迫的影响尚不清楚。本研究用0.1 mg L -1 EBR和蒸馏水分别浸泡萌发的日本晴种子, 然后提取4°C胁迫培养和26°C正常培养幼苗的总蛋白, 进行质谱非标(label-free)定量分析和平行反应监测(parallel reaction monitoring, PRM)验证。最终共鉴定出5778个蛋白质, 其中, 在有定量信息的4834个蛋白中, 401个上调和220个下调蛋白与EBR影响水稻幼苗响应低温胁迫有关。功能分析和代谢通路富集分析发现, 上调蛋白主要与RNA结合或水解酶活性等分子功能相关, 并富集在碳代谢、叶酸合成和氨基酸生物合成等途径中; 下调蛋白主要与催化活性和氧化还原酶活性相关, 主要涉及卟啉和叶绿素代谢等代谢途径。PRM验证结果和文献证据显示, 分布在碳代谢和苯丙素代谢通路中的NADP-苹果酸酶、过氧化物酶、3-磷酸甘油酸脱氢酶、烯醇化酶、甘油醛-3-磷酸脱氢酶和丙酮酸激酶参与了EBR对低温胁迫水稻幼苗的调控, 提示BRs可通过多种途径影响水稻幼苗对低温胁迫的响应。

关键词: 表油菜素内酯, 低温胁迫, 蛋白质组学, 水稻

Abstract:

As a plant growth regulator which functionally resembles a kind of plant hormone Brassinosteroids (BRs), 2,4-Epibrassinolide (EBR) has been widely studied and applied in different aspects. EBR can enhance plant’s cold tolerance effectively, but the proteomic characteristics of the effect of EBR on rice seedings response to cold stress are still unclear. In this study, the germinating seeds of rice Nipponbare were treated with 0.1 mg L -1 EBR and distilled water before they were cultivated at 4°C or 26°C, and then the total protein of each group of seedlings was extracted. Finally, proteomes of rice seedings were analyzed by label-free quantitative mass spectrometry, and some important proteins were verified by parallel reaction monitoring technique (PRM). A total of 5778 protein groups were identified by qualitative method and 4834 protein groups were accurately quantitated. Among them, 401 up-regulated and 220 down-regulated proteins were related to the effect of EBR on rice seedings response to cold stress. The up-regulated proteins were mainly related to molecular function of RNA binding and hydrolase activity, and mainly enriched in the pathways of carbon metabolism, folic acid synthesis and amino acid biosynthesis. The down-regulated proteins were mainly related to catalytic activity and oxidoreductase activity, and mainly enriched in the pathways of porphyrin and chlorophyll metabolism and other metabolic pathways. PRM validation and literature analysis showed that NADP-malic acidase, peroxidase, 3-phosphoglycerate dehydrogenase, enolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase, which are distributed in the pathways of carbon metabolism and phenylpropanol metabolism and others, take part in the regulation of EBR on rice seedlings response to cold stress, suggesting that BRs can affect rice seedlings response to cold stress through a variety of pathways.

Key words: 2, 4-Epibrassinolide, cold stress, proteomics, rice

图1

水稻低温胁迫表型及叶绿素含量 A: 4组样品表型图; B: 4组样品叶绿素a和叶绿素b含量比较; C: 4组样品全株重比较。随机选取10株幼苗称重, 重复3次, 算其平均值作为该组样品的全株鲜重。4B: EBR处理4°C培养样品, 4: 单独4°C培养样品, 26B: EBR处理26°C培养样品, 26: 单独26°C培养样品。B和C中标以不同小字母的同组数值在0.05水平差异显著。"

图2

质谱定性和定量分析结果 A: 定性鉴定蛋白数及样品间共有蛋白数; B: 样品间的皮尔逊相关性分析图; C: 定量鉴定蛋白质信号强度分布表。"

图3

定量蛋白的差异性比较 A: 样品间的差异蛋白数; B: 与EBR影响水稻幼苗响应低温胁迫有关上调蛋白维恩图; C: 与EBR影响水稻幼苗响应低温胁迫有关下调蛋白维恩图。H表示上调, L表示下调。"

图4

影响水稻幼苗响应低温胁迫相关蛋白的本体分析 A: 401个上调蛋白质的本体分析; B: 220个下调蛋白质的本体分析。"

图5

代谢通路分析 A: 401个上调差异蛋白质代谢通路分析; B: 220个下调差异蛋白质的代谢通路分析。"

表1

与EBR影响水稻幼苗响应低温胁迫相关的重要通路及富集的蛋白质"

通路和蛋白
Pathway name and protein IDs
注解
Annotation
信号强度Intensity
26 26B 4 4B
碳代谢 Carbon metabolism
LOC_Os01g54030.1 Nadp-dependent malic enzyme 0.00E+00 0.00E+00 0.00E+00 1.78E+07
LOC_Os02g38200.1 Dehydrogenase 3.97E+08 1.78E+08 9.81E+07 2.64E+08
LOC_Os03g15050.2 Phosphoenolpyruvate carboxykinase 1.22E+08 5.70E+07 4.21E+07 1.26E+08
LOC_Os04g24140.1 Ribose-5-phosphate isomerase a 1.10E+08 8.97E+06 1.79E+07 7.07E+07
LOC_Os06g04510.1 Enolase 5.68E+07 1.08E+07 0.00E+00 2.00E+07
LOC_Os06g05700.1 Cysteine synthase 0.00E+00 0.00E+00 0.00E+00 8.73E+06
LOC_Os06g45590.1 Glyceraldehyde-3-phosphate dehydrogenase 0.00E+00 0.00E+00 0.00E+00 3.28E+07
LOC_Os07g09890.1 Hexokinase 2.82E+07 0.00E+00 0.00E+00 2.09E+07
LOC_Os08g02700.1 Fructose-bisphospate aldolase isozyme 3.73E+07 0.00E+00 0.00E+00 8.83E+06
LOC_Os09g24910.2 Phosphofructokinase 0.00E+00 0.00E+00 0.00E+00 2.38E+07
LOC_Os11g10980.1 Pyruvate kinase 0.00E+00 0.00E+00 0.00E+00 1.06E+07
LOC_Os11g41160.3 Phosphoserine phosphatase 2.13E+07 1.00E+07 0.00E+00 2.83E+07
LOC_Os12g05110.1 Pyruvate kinase 2.37E+08 1.29E+08 5.51E+07 2.95E+08
LOC_Os06g35540.1 Aminotransferase 5.93E+07 1.63E+08 1.61E+08 7.89E+07
LOC_Os06g44460.1 D-3-phosphoglycerate dehydrogenase 9.76E+06 7.49E+07 2.85E+07 3.37E+07
LOC_Os05g49760.1 Dehydrogenase 0.00E+00 1.20E+08 1.00E+08 3.93E+07
苯丙素生物合成 Phenylpropanoid biosynthesis
LOC_Os10g17650.1 Os10bglu34—beta-glucosidase homologue 1.02E+08 0.00E+00 7.90E+07 4.76E+08
LOC_Os01g32364.1 Os1bglu1—beta-mannosidase/glucosidase homologue 0.00E+00 0.00E+00 0.00E+00 8.51E+06
LOC_Os01g73200.1 Peroxidase 0.00E+00 0.00E+00 0.00E+00 2.12E+07
LOC_Os02g41680.1 Phenylalanine ammonia-lyase 7.94E+06 0.00E+00 0.00E+00 6.33E+06
LOC_Os04g56180.1 Peroxidase 1.25E+08 2.86E+07 5.14E+07 7.05E+07
LOC_Os03g11420.1
Os3bglu6—beta-glucosidase/beta-fucosidase/beta-galactosidase 0.00E+00
2.25E+07
3.03E+07
6.87E+06
LOC_Os01g22249.1 Peroxidase 1.24E+07 5.91E+07 2.05E+08 0.00E+00
LOC_Os05g04500.1 Peroxidase 8.07E+06 1.92E+08 5.61E+07 0.00E+00
LOC_Os07g01410.1 Peroxidase 2.01E+07 5.70E+06 8.45E+07 0.00E+00
LOC_Os08g34280.1 Cinnamoyl-coa reductase 0.00E+00 6.70E+06 6.25E+07 0.00E+00
LOC_Os09g33680.1 Os9bglu31—beta-glucosidase, dhurrinase 0.00E+00 4.08E+07 1.92E+07 1.48E+07
卟啉和叶绿素代谢 Porphyrin and chlorophyll metabolism
LOC_Os03g22780.1 DVR 8.72E+07 0.00E+00 4.27E+07 9.48E+07
LOC_Os01g16520.1 Glutamyl-tRNA synthetase 0.00E+00 1.59E+07 1.40E+07 0.00E+00
LOC_Os01g57460.1 Frataxin, putative, expressed 4.04E+07 9.91E+07 1.15E+08 0.00E+00
LOC_Os10g37210.1
FAD dependent oxidoreductase domain containing
Protein
2.01E+07
3.51E+06
5.45E+07
0.00E+00
LOC_Os04g41260.1 Amine oxidase 0.00E+00 2.87E+06 1.70E+07 0.00E+00
叶酸生物合成 Folate biosynthesis
LOC_Os11g29390.1
Bifunctional dihydrofolate reductase-thymidylate
synthase
4.47E+06
1.31E+07
3.66E+06
0.00E+00
LOC_Os09g38759.1 Dihydroneopterin aldolase 2.42E+07 0.00E+00 5.66E+06 2.25E+07
LOC_Os04g38950.1 Class I glutamine amidotransferase 6.99E+07 0.00E+00 2.89E+07 2.37E+07
LOC_Os03g02030.2 Folylpolyglutamate synthase 0.00E+00 0.00E+00 0.00E+00 2.04E+07
LOC_Os02g35200.1 Vp15 0.00E+00 0.00E+00 0.00E+00 7.22E+06
通路和蛋白
Pathway name and protein IDs
注解
Annotation
信号强度Intensity
26 26B 4 4B
不饱和脂肪酸生物合成 Biosynthesis of unsaturated fatty acids
LOC_Os01g65830.1 Acyl-desaturase 6.12E+07 0.00E+00 0.00E+00 8.06E+06
LOC_Os02g48560.6 Fatty acid desaturase 4.69E+08 7.57E+07 8.14E+07 3.83E+08
LOC_Os08g10010.1 Acyl-desaturase 1.38E+08 2.72E+07 4.92E+07 6.52E+07
LOC_Os11g39220.2 Acyl-coenzyme A oxidase 0.00E+00 4.07E+07 3.18E+07 0.00E+00
脂肪酸生物合成 Fatty acid biosynthesis
LOC_Os01g65830.1 Acyl-desaturase 6.12E+07 0.00E+00 0.00E+00 8.06E+06
LOC_Os08g10010.1 Acyl-desaturase 1.38E+08 2.72E+07 4.92E+07 6.52E+07
LOC_Os03g28420.1 3-oxoacyl-synthase 8.02E+07 3.53E+07 0.00E+00 1.01E+08
LOC_Os01g48910.2 Long-chain acyl-coa synthetase 3.27E+07 2.61E+07 4.38E+06 5.34E+07
LOC_Os12g04990.3 Long-chain acyl-coa synthetase 1.80E+07 2.67E+07 6.15E+07 9.72E+06

图6

部分差异丰度蛋白PRM验证 A: 3-磷酸甘油酸脱氢酶; B: 烯醇化酶; C: NADP-苹果酸酶; D: 甘油醛-3-磷酸脱氢酶; E: 丙酮酸激酶; F: 过氧化物酶。"

[1] Liu Q, Zhang Y C, Wang C Y, Luo Y C, Huang Q J, Chen S Y, Zhou H, Qu L H, Chen Y Q . Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett, 2009,583:723-728
doi: 10.1016/j.febslet.2009.01.020 pmid: 19167382
[2] Peleg Z, Blumwald E . Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011,14:290-295
doi: 10.1016/j.pbi.2011.02.001
[3] Zhang G, Song X G, Guo H Y, Wu Y, Chen X Y, Fang R X . A small G protein as a novel component of the rice brassinosteroid signal transduction. Mol Plant, 2016,9:1260-1271
doi: 10.1016/j.molp.2016.06.010 pmid: 27375203
[4] De Bruyne L, Hofte M, De Vleesschauwer D . Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant, 2014,7:943-959
doi: 10.1093/mp/ssu050
[5] Zhang C, Bai M Y, Chong K . Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep, 2014,33:683-696
doi: 10.1007/s00299-014-1578-7
[6] Krishna P, Prasad B D, Rahman T . Brassinosteroid action in plant abiotic stress tolerance. Methods Mol Biol, 2017,1564:193-202
doi: 10.1007/978-1-4939-6813-8
[7] Kagale S, Divi U K, Krochko J E, Keller W A, Krishna P . Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 2007,225:353-364
[8] Divi U K, Krishna P . Overexpression of the Brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul, 2010,29:385-393
[9] 黄玉辉, 罗海玲, 陈小凤 . 油菜素内酯对苦瓜幼苗抗冷性的影响. 南方农业学报, 2011,42:488-491
doi: 10.3969/j.issn.2095-1191.2011.05.007
Huang Y H, Luo H L, Chen X F . Effects of Brassinolide on cold resistance of Momordica charantia L. seedlings. Southern Agric J, 2011,42:488-491 (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-1191.2011.05.007
[10] Singh I, Kumar U, Singh S K, Gupta C, Singh M, Kushwaha S R . Physiological and biochemical effect of 2,4-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants, 2012,18:229-236
doi: 10.1007/s12298-012-0122-x pmid: 3550514
[11] Shu S, Tang Y Y, Yuan Y H, Sun J, Zhong M, Guo S R . The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Bioch, 2016, 107:344-353
doi: 10.1016/j.plaphy.2016.06.021 pmid: 27362298
[12] 李杰 . 油菜素内酯调控辣椒低温耐受性的作用机理. 甘肃农业大学博士学位论文, 甘肃兰州, 2016
Li J . Mechanism of Brassinolide Controlling Low Temperature Tolerance of Pepper. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2016 ( in Chinese with English abstract)
[13] Huang B, Chu C H, Chen S L, Juan H F, Chen Y M . A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell Mol Biol Lett, 2006,11:264-278
[14] Ji L, Zhou P, Zhu Y, Liu F, Li R B, Qiu Y F . Proteomic analysis of rice seedlings under cold stress. Prot J, 2017,36:299-307
doi: 10.1007/s10930-017-9721-2
[15] Yang P F, Li X J, Liang Y, Jing Y X, Shen S H, Kuang T Y . Proteomic analysis of the response of Liangyoupeijiu (super high-yield hybrid rice) seedlings to cold stress. J Integr Plant Biol, 2006,48:945-951
doi: 10.1111/jipb.2006.48.issue-8
[16] Chen J H, Tian L, Xu H F, Tian D G, Luo Y M, Ren C M, Yang L M, Shi J S . Cold-induced changes of protein and phosphoprotein expression patterns from rice roots as revealed by multiplex proteomic analysis. Plant Omics, 2012,5:194-199
[17] Cui S X, Huang F, Wang J, Ma X, Cheng Y S, Liu J Y . A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005,5:3162-3172
doi: 10.1002/(ISSN)1615-9861
[18] Hashimoto M, Komatsu S . Proteomic analysis of rice seedlings during cold stress. Proteomics, 2007,7:1293-1302
doi: 10.1002/(ISSN)1615-9861
[19] Neilson K A, Mariani M, Haynes P A . Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics, 2011,11:1696-1706
doi: 10.1002/pmic.201000727
[20] Ruelland E, Vaultier M N, Zachowski A, Hurry V . Cold signalling and cold acclimation in plants. Adv Bot Res, 2009,49:35-150
doi: 10.1016/S0065-2296(08)00602-2
[21] Eremina M, Rozhon W, Poppenberger B . Hormonal control of cold stress responses in plants. Cell Mol Life Sci, 2016,73:797-810
doi: 10.1007/s00018-015-2089-6
[22] Shi K, Fu L J, Zhang S, Li X , Liao Y W K, Xia X J, Zhou Y H, Wang R Q, Chen Z X, Yu J Q. Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants. Planta, 2013,237:589-601
doi: 10.1007/s00425-012-1799-3 pmid: 23229059
[23] Duque P, Barreiro M G, Arrabaca J D . Respiratory metabolism during cold storage of apple fruit. I. Sucrose metabolism and glycolysis. Physiol Plant, 1999,107:14-23
doi: 10.1034/j.1399-3054.1999.100103.x
[24] Vogt T . Phenylpropanoid biosynthesis. Mol Plant, 2010,3:2-20
doi: 10.1093/mp/ssp106
[25] Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Urnemura K, Urnezawa T, Shimamoto K . Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA, 2006,103:230-235
doi: 10.1073/pnas.0509875103 pmid: 16380417
[26] 王平荣, 邓晓建 . 高等植物叶绿素生物合成的联乙烯还原酶及编码基因研究进展. 西北植物学报, 2013,33:843-849
Wang P R, Deng X J . Advances in studies on vulcan reductase and coding genes of chlorophyll biosynthesis in higher plants. Acta Bot Boreali-Occident Sin, 2013,33:843-849 (in Chinese with English abstract)
[27] Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J . Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010,153:994-1003
doi: 10.1104/pp.110.158477 pmid: 20484022
[28] Bekaert S, Storozhenko S, Mehrshah P, Bennett M J, Lambert W, Gregory J F, Schubert K, Hugenholtz J , Van Der Straeten D, Hanson A D. Folate biofortification in food plants. Trends Plant Sci, 2008,13:28-35
[29] Sha L, Ling J, Chongying W, Chunyi Z . Research advances in the functions of plant folates. Chin Bull Bot, 2013,47:525-533
doi: 10.3724/SP.J.1259.2012.00525
[30] Gambonnet B, Jabrin S, Ravanel S, Karan M, Douce R, Rebeille F . Folate distribution during higher plant development. J Sci Food Agric, 2001,81:835-841
doi: 10.1002/jsfa.v81:9
[31] Webb M E, Smith A G . Chlorophyll and folate: intimate link revealed by drug treatment. New Phytol, 2009,182:3-5
doi: 10.1111/j.1469-8137.2009.02790.x
[32] Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang G F, Lambert W , Van Der Straeten D. Folate fortification of rice by metabolic engineering. Nat Biotechnol, 2007,25:1277-1279
doi: 10.1038/nbt1351
[33] Garwin J L, Klages A L , Cronan J E Jr. Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem, 1980,255:3263-3265
[34] Zhu S Q, Yu C M, Liu X Y, Ji B H, Jiao D M . Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. J Integr Plant Biol, 2007,49:463-471
doi: 10.1111/j.1744-7909.2007.00438.x
[35] Ho C L, Noji M, Saito M, Saito K . Regulation of serine biosynthesis in Arabidopsis. J Biol Chem, 1999,274:397-402
[36] Kosova K, Vitamvas P, Prasil I T, Renaut J . Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics, 2011,74:1301-1322
doi: 10.1016/j.jprot.2011.02.006 pmid: 21329772
[37] Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu J K . LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J, 2002,21:2692-2702
doi: 10.1093/emboj/21.11.2692
[38] Liu D C, He L G, Wang H L, Xu M, Sun Z H . Expression profiles of PtrLOS2 encoding an enolase required for cold-responsive gene transcription from trifoliate orange. Biol Plant, 2011,55:35-42
doi: 10.1007/s10535-011-0005-y
[39] 姚雪倩, 陈丹, 岳川, 杨国一, 王鹏杰, 陈桂信, 叶乃兴 . 茶树烯醇酶基因CsENO的克隆及其在非生物胁迫中的表达分析. 园艺学报, 2017,44:537-546
doi: 10.16420/j.issn.0513-353x.2016-0731
Yao X Q, Chen D, Yue C, Yang G Y, Wang P J, Chen G X, Ye N X . Cloning of chrysanthemum enzyme gene CsENO and its expression in abiotic stress. Acta Hortic Sin, 2017,44:537-546 (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2016-0731
[40] Sharma P, Ganeshan S, Fowler D B, Chibbar R N . Characterisation of two wheat enolase cDNA showing distinct patterns of expression in leaf and crown tissues of plants exposed to low temperature. Ann Appl Biol, 2013,162:271-283
doi: 10.1111/aab.12019
[41] Wedding R T . Malic enzymes of higher plants: characteristics, regulation, and physiological function. Plant Physiol, 1989,90:367-371
doi: 10.1104/pp.90.2.367
[42] Edwards G E, Andreo C S . NADP-malic enzyme from plants. Phytochemistry, 1992,31:1845-1857
doi: 10.1016/0031-9422(92)80322-6 pmid: 1368216
[43] Fu Z Y, Zhang Z B, Hu X J, Shao H B, Ping X . Cloning, identification, expression analysis and phylogenetic relevance of two NADP-dependent malic enzyme genes from hexaploid wheat. C R Biol, 2009,332:591-602
doi: 10.1016/j.crvi.2009.03.002 pmid: 19523599
[44] Zeng Li F, Deng R, Guo Z P, Yang S S, Deng X P . Genome-wide identification and characterization of glyceraldehyde-3-phosphate dehydrogenase genes family in wheat ( Triticum aestivum). BMC Genomics, 2016,17:240
doi: 10.1186/s12864-016-2527-3 pmid: 4793594
[45] Kim B H, Kim S Y, Nam K H . Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells, 2012,34:539-548
doi: 10.1007/s10059-012-0230-z pmid: 3887832
[46] Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One , 2013, 8: e57472
doi: 10.1371/journal.pone.0057472 pmid: 23468992
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!