作物学报 ›› 2018, Vol. 44 ›› Issue (6): 897-908.doi: 10.3724/SP.J.1006.2018.00897
王道平1,2,徐江2,牟永莹2,3,闫文秀2,3,赵梦洁3,马博3,李群1,*(),张丽娜2,3,潘映红2,3,*()
Dao-Ping WANG1,2,Jiang XU2,Yong-Ying MU2,3,Wen-Xiu YAN2,3,Meng-Jie ZHAO3,Bo MA3,Qun LI1,*(),Li-Na ZHANG2,3,Ying-Hong PAN2,3,*()
摘要:
表油菜素内酯(2,4-Epibrassinolide, EBR)是一种被广泛研究和应用的油菜素内酯类(brassinosteroids, BRs)植物生长调节剂, 它能有效增强植物对低温的耐受性, 但EBR在蛋白质组水平上对水稻幼苗响应低温胁迫的影响尚不清楚。本研究用0.1 mg L -1 EBR和蒸馏水分别浸泡萌发的日本晴种子, 然后提取4°C胁迫培养和26°C正常培养幼苗的总蛋白, 进行质谱非标(label-free)定量分析和平行反应监测(parallel reaction monitoring, PRM)验证。最终共鉴定出5778个蛋白质, 其中, 在有定量信息的4834个蛋白中, 401个上调和220个下调蛋白与EBR影响水稻幼苗响应低温胁迫有关。功能分析和代谢通路富集分析发现, 上调蛋白主要与RNA结合或水解酶活性等分子功能相关, 并富集在碳代谢、叶酸合成和氨基酸生物合成等途径中; 下调蛋白主要与催化活性和氧化还原酶活性相关, 主要涉及卟啉和叶绿素代谢等代谢途径。PRM验证结果和文献证据显示, 分布在碳代谢和苯丙素代谢通路中的NADP-苹果酸酶、过氧化物酶、3-磷酸甘油酸脱氢酶、烯醇化酶、甘油醛-3-磷酸脱氢酶和丙酮酸激酶参与了EBR对低温胁迫水稻幼苗的调控, 提示BRs可通过多种途径影响水稻幼苗对低温胁迫的响应。
[1] |
Liu Q, Zhang Y C, Wang C Y, Luo Y C, Huang Q J, Chen S Y, Zhou H, Qu L H, Chen Y Q . Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett, 2009,583:723-728
doi: 10.1016/j.febslet.2009.01.020 pmid: 19167382 |
[2] |
Peleg Z, Blumwald E . Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011,14:290-295
doi: 10.1016/j.pbi.2011.02.001 |
[3] |
Zhang G, Song X G, Guo H Y, Wu Y, Chen X Y, Fang R X . A small G protein as a novel component of the rice brassinosteroid signal transduction. Mol Plant, 2016,9:1260-1271
doi: 10.1016/j.molp.2016.06.010 pmid: 27375203 |
[4] |
De Bruyne L, Hofte M, De Vleesschauwer D . Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant, 2014,7:943-959
doi: 10.1093/mp/ssu050 |
[5] |
Zhang C, Bai M Y, Chong K . Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep, 2014,33:683-696
doi: 10.1007/s00299-014-1578-7 |
[6] |
Krishna P, Prasad B D, Rahman T . Brassinosteroid action in plant abiotic stress tolerance. Methods Mol Biol, 2017,1564:193-202
doi: 10.1007/978-1-4939-6813-8 |
[7] | Kagale S, Divi U K, Krochko J E, Keller W A, Krishna P . Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 2007,225:353-364 |
[8] | Divi U K, Krishna P . Overexpression of the Brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul, 2010,29:385-393 |
[9] |
黄玉辉, 罗海玲, 陈小凤 . 油菜素内酯对苦瓜幼苗抗冷性的影响. 南方农业学报, 2011,42:488-491
doi: 10.3969/j.issn.2095-1191.2011.05.007 |
Huang Y H, Luo H L, Chen X F . Effects of Brassinolide on cold resistance of Momordica charantia L. seedlings. Southern Agric J, 2011,42:488-491 (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-1191.2011.05.007 |
|
[10] |
Singh I, Kumar U, Singh S K, Gupta C, Singh M, Kushwaha S R . Physiological and biochemical effect of 2,4-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants, 2012,18:229-236
doi: 10.1007/s12298-012-0122-x pmid: 3550514 |
[11] |
Shu S, Tang Y Y, Yuan Y H, Sun J, Zhong M, Guo S R . The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Bioch, 2016, 107:344-353
doi: 10.1016/j.plaphy.2016.06.021 pmid: 27362298 |
[12] | 李杰 . 油菜素内酯调控辣椒低温耐受性的作用机理. 甘肃农业大学博士学位论文, 甘肃兰州, 2016 |
Li J . Mechanism of Brassinolide Controlling Low Temperature Tolerance of Pepper. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2016 ( in Chinese with English abstract) | |
[13] | Huang B, Chu C H, Chen S L, Juan H F, Chen Y M . A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell Mol Biol Lett, 2006,11:264-278 |
[14] |
Ji L, Zhou P, Zhu Y, Liu F, Li R B, Qiu Y F . Proteomic analysis of rice seedlings under cold stress. Prot J, 2017,36:299-307
doi: 10.1007/s10930-017-9721-2 |
[15] |
Yang P F, Li X J, Liang Y, Jing Y X, Shen S H, Kuang T Y . Proteomic analysis of the response of Liangyoupeijiu (super high-yield hybrid rice) seedlings to cold stress. J Integr Plant Biol, 2006,48:945-951
doi: 10.1111/jipb.2006.48.issue-8 |
[16] | Chen J H, Tian L, Xu H F, Tian D G, Luo Y M, Ren C M, Yang L M, Shi J S . Cold-induced changes of protein and phosphoprotein expression patterns from rice roots as revealed by multiplex proteomic analysis. Plant Omics, 2012,5:194-199 |
[17] |
Cui S X, Huang F, Wang J, Ma X, Cheng Y S, Liu J Y . A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005,5:3162-3172
doi: 10.1002/(ISSN)1615-9861 |
[18] |
Hashimoto M, Komatsu S . Proteomic analysis of rice seedlings during cold stress. Proteomics, 2007,7:1293-1302
doi: 10.1002/(ISSN)1615-9861 |
[19] |
Neilson K A, Mariani M, Haynes P A . Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics, 2011,11:1696-1706
doi: 10.1002/pmic.201000727 |
[20] |
Ruelland E, Vaultier M N, Zachowski A, Hurry V . Cold signalling and cold acclimation in plants. Adv Bot Res, 2009,49:35-150
doi: 10.1016/S0065-2296(08)00602-2 |
[21] |
Eremina M, Rozhon W, Poppenberger B . Hormonal control of cold stress responses in plants. Cell Mol Life Sci, 2016,73:797-810
doi: 10.1007/s00018-015-2089-6 |
[22] |
Shi K, Fu L J, Zhang S, Li X , Liao Y W K, Xia X J, Zhou Y H, Wang R Q, Chen Z X, Yu J Q. Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants. Planta, 2013,237:589-601
doi: 10.1007/s00425-012-1799-3 pmid: 23229059 |
[23] |
Duque P, Barreiro M G, Arrabaca J D . Respiratory metabolism during cold storage of apple fruit. I. Sucrose metabolism and glycolysis. Physiol Plant, 1999,107:14-23
doi: 10.1034/j.1399-3054.1999.100103.x |
[24] |
Vogt T . Phenylpropanoid biosynthesis. Mol Plant, 2010,3:2-20
doi: 10.1093/mp/ssp106 |
[25] |
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Urnemura K, Urnezawa T, Shimamoto K . Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA, 2006,103:230-235
doi: 10.1073/pnas.0509875103 pmid: 16380417 |
[26] | 王平荣, 邓晓建 . 高等植物叶绿素生物合成的联乙烯还原酶及编码基因研究进展. 西北植物学报, 2013,33:843-849 |
Wang P R, Deng X J . Advances in studies on vulcan reductase and coding genes of chlorophyll biosynthesis in higher plants. Acta Bot Boreali-Occident Sin, 2013,33:843-849 (in Chinese with English abstract) | |
[27] |
Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J . Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010,153:994-1003
doi: 10.1104/pp.110.158477 pmid: 20484022 |
[28] | Bekaert S, Storozhenko S, Mehrshah P, Bennett M J, Lambert W, Gregory J F, Schubert K, Hugenholtz J , Van Der Straeten D, Hanson A D. Folate biofortification in food plants. Trends Plant Sci, 2008,13:28-35 |
[29] |
Sha L, Ling J, Chongying W, Chunyi Z . Research advances in the functions of plant folates. Chin Bull Bot, 2013,47:525-533
doi: 10.3724/SP.J.1259.2012.00525 |
[30] |
Gambonnet B, Jabrin S, Ravanel S, Karan M, Douce R, Rebeille F . Folate distribution during higher plant development. J Sci Food Agric, 2001,81:835-841
doi: 10.1002/jsfa.v81:9 |
[31] |
Webb M E, Smith A G . Chlorophyll and folate: intimate link revealed by drug treatment. New Phytol, 2009,182:3-5
doi: 10.1111/j.1469-8137.2009.02790.x |
[32] |
Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang G F, Lambert W , Van Der Straeten D. Folate fortification of rice by metabolic engineering. Nat Biotechnol, 2007,25:1277-1279
doi: 10.1038/nbt1351 |
[33] | Garwin J L, Klages A L , Cronan J E Jr. Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem, 1980,255:3263-3265 |
[34] |
Zhu S Q, Yu C M, Liu X Y, Ji B H, Jiao D M . Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. J Integr Plant Biol, 2007,49:463-471
doi: 10.1111/j.1744-7909.2007.00438.x |
[35] | Ho C L, Noji M, Saito M, Saito K . Regulation of serine biosynthesis in Arabidopsis. J Biol Chem, 1999,274:397-402 |
[36] |
Kosova K, Vitamvas P, Prasil I T, Renaut J . Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics, 2011,74:1301-1322
doi: 10.1016/j.jprot.2011.02.006 pmid: 21329772 |
[37] |
Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu J K . LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J, 2002,21:2692-2702
doi: 10.1093/emboj/21.11.2692 |
[38] |
Liu D C, He L G, Wang H L, Xu M, Sun Z H . Expression profiles of PtrLOS2 encoding an enolase required for cold-responsive gene transcription from trifoliate orange. Biol Plant, 2011,55:35-42
doi: 10.1007/s10535-011-0005-y |
[39] |
姚雪倩, 陈丹, 岳川, 杨国一, 王鹏杰, 陈桂信, 叶乃兴 . 茶树烯醇酶基因CsENO的克隆及其在非生物胁迫中的表达分析. 园艺学报, 2017,44:537-546
doi: 10.16420/j.issn.0513-353x.2016-0731 |
Yao X Q, Chen D, Yue C, Yang G Y, Wang P J, Chen G X, Ye N X . Cloning of chrysanthemum enzyme gene CsENO and its expression in abiotic stress. Acta Hortic Sin, 2017,44:537-546 (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2016-0731 |
|
[40] |
Sharma P, Ganeshan S, Fowler D B, Chibbar R N . Characterisation of two wheat enolase cDNA showing distinct patterns of expression in leaf and crown tissues of plants exposed to low temperature. Ann Appl Biol, 2013,162:271-283
doi: 10.1111/aab.12019 |
[41] |
Wedding R T . Malic enzymes of higher plants: characteristics, regulation, and physiological function. Plant Physiol, 1989,90:367-371
doi: 10.1104/pp.90.2.367 |
[42] |
Edwards G E, Andreo C S . NADP-malic enzyme from plants. Phytochemistry, 1992,31:1845-1857
doi: 10.1016/0031-9422(92)80322-6 pmid: 1368216 |
[43] |
Fu Z Y, Zhang Z B, Hu X J, Shao H B, Ping X . Cloning, identification, expression analysis and phylogenetic relevance of two NADP-dependent malic enzyme genes from hexaploid wheat. C R Biol, 2009,332:591-602
doi: 10.1016/j.crvi.2009.03.002 pmid: 19523599 |
[44] |
Zeng Li F, Deng R, Guo Z P, Yang S S, Deng X P . Genome-wide identification and characterization of glyceraldehyde-3-phosphate dehydrogenase genes family in wheat ( Triticum aestivum). BMC Genomics, 2016,17:240
doi: 10.1186/s12864-016-2527-3 pmid: 4793594 |
[45] |
Kim B H, Kim S Y, Nam K H . Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells, 2012,34:539-548
doi: 10.1007/s10059-012-0230-z pmid: 3887832 |
[46] |
Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One , 2013, 8: e57472
doi: 10.1371/journal.pone.0057472 pmid: 23468992 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|