作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1159-1168.doi: 10.3724/SP.J.1006.2018.01159
Dan-Xia KE(),Kun-Peng PENG,Yan JIA,Shuo ZENG,Ying-Zhi WANG,Jing-Yi ZHANG
摘要:
半胱氨酸蛋白酶抑制剂(cystatin, CYS)在结瘤, 根瘤发育和衰老过程中起重要作用。本研究克隆了1个大豆CYS家族基因GmCYS2, 氨基酸序列比对及进化树分析表明, GmCYS2与木豆(Cajanus cajan) CYS相似性最高。在体外对该基因编码蛋白进行了表达和纯化, 重组蛋白GmCYS2的酶活性抑制实验显示, 该蛋白对L类和B类组织蛋白酶的抑制活性明显高于对H类组织蛋白酶, 并且在30 d根瘤提取物中的抑制活性高于在60 d根瘤提取物中。此外, 构建GmCYS2的植物表达载体, 通过百脉根毛根转化法获得转GmCYS2基因的超表达复合体植株。GmCYS2的超量表达增加了百脉根的结瘤数目, 并且上调共生标记基因的表达。结果说明GmCYS2蛋白具有一定的酶活性抑制作用, 并且正调控百脉根共生结瘤过程。
[1] |
Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I . Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett, 2007,581:2914-2918
doi: 10.1016/j.febslet.2007.05.042 |
[2] | Stubbs M T, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V . The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J, 1990,9:1939-1947 |
[3] |
Margis R, Reis E M, Villeret V . Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys, 1998,359:24-30
doi: 10.1006/abbi.1998.0875 pmid: 9799556 |
[4] |
Martinez M, Cambra I, Carrillo L, Diaz-Mendoza M, Diaz I . Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol, 2009,151:1531-1545
doi: 10.1104/pp.109.146019 |
[5] |
Benchabane M, Schlüter U, Vorster J, Goulet M C, Michaud D . Plant cystatins. Biochimie, 2010,92:1657-1666
doi: 10.1016/j.biochi.2010.06.006 |
[6] |
Arai S, Matsumoto I, Emori Y, Abe K . Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J Agric Food Chem, 2002,50:6612-6617
doi: 10.1021/jf0201935 |
[7] | Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P, Delledonne M . AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem, 2003,270:2593-2604 |
[8] | Hwang J E, Hong J K, Lim C J, Chen H, Je J, Yang K A, Kim D Y, Choi Y J, Lee S Y, Lim C O . Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses. Plant Cell Rep, 2010,29:905-915 |
[9] |
Carrillo L, Martinez M, Ramessar K, Cambra I, Castañera P, Ortego F, Díaz I . Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Rep, 2011,30:101-112
doi: 10.1007/s00299-010-0948-z |
[10] | Popovic M, Andjelkovic U, Burazer L, Lindner B, Petersen A, Gavrovic-Jankulovic M . Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa). Phytochemistry, 2013,94:53-59 |
[11] | Tan Y, Wang S, Liang D, Li M, Ma F . Genome-wide identification and expression profiling of the cystatin gene family in apple (Malus × domestica Borkh.). Plant Physio Biochem, 2014,79:88-97 |
[12] | Tan Y X, Li M J, Ma F W . Overexpression of MpCYS2, a phytocystatin gene from Malus prunifolia(Willd.) Borkh., confers drought tolerance and protects against oxidative stress in Arabidopsis. Plant Cell Tiss Org, 2015,123:15-27 |
[13] | Tan Y X, Li M J, Yang Y L, Sun X, Wang N, Liang B W, Ma F W . Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia(Willd.) Borkh., enhances stomatal closure to confer drought tolerance in transgenic Arabidopsis and apple. Front Plant Sci, 2017,8:33 |
[14] | Tan Y X, Yang Y L, Li C, Liang B W, Li M J, Ma F W . Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia(Willd.) Borkh., delays natural and stress-induced leaf senescence in apple. Plant Physiol Biochem, 2017,115:219-228 |
[15] | Tan Y X, Wei XY, Wang P, Sun X, Li M J, Ma F W . A phytocystatin gene from Malus prunifolia(Willd.) Borkh., MpCYS5, confers salt stress tolerance and functions in endoplasmic reticulum stress response in Arabidopsis. Plant Mol Biol Rep, 2016,34:62-75 |
[16] | Song C, Kim T, Chung W S, Lim C O . The Arabidopsis phytocystatin AtCYS5 enhances seed germination and seedling growth under heat stress conditions. Mol Cells, 2017,40:577-586 |
[17] |
Christoff A P, Passaia G, Salvati C, Alves-Ferreira M, Margis- Pinheiro M, Margis R . Rice bifunctional phytocystatin is a dual modulator of legumain and papain-like proteases. Plant Mol Biol, 2016,92:193-207
doi: 10.1007/s11103-016-0504-5 pmid: 27325119 |
[18] | Sun X, Yang S, Sun M, Wang S, Ding X, Zhu D, Ji W, Cai H, Zhao C, Wang X, Zhu Y . A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin- binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. Plant Mol Biol, 2014,85:33-48 |
[19] | Labudda M, Różańska E, Szewińska J, Sobczak M, Dzik J M . Protease activity and phytocystatin expression in Arabidopsis thaliana upon heterodera schachtii infection. Plant Physiol Biochem, 2016,109:416-429 |
[20] | Yu Y, Zhang G, Li Z, Cheng Y, Gao C, Zeng L, Chen J, Yan L, Sun X, Guo L, Yan Z . Molecular cloning, recombinant expression and antifungal activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.). Genes(Basel), 2017,8:265 |
[21] |
Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A . Genome sequence of the palaeopolyploid soybean. Nature, 2010,463:178-183
doi: 10.1038/nature08670 pmid: 20075913 |
[22] |
Severin A J, Woody J L, Bolon Y T, Joseph B, Diers B W, Farmer A D, Muehlbauer G J, Nelson R T, Grant D, Specht J E, Graham M A, Cannon S B, May G D, Vance C P, Shoemaker R C . RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol, 2010,10:160
doi: 10.1186/1471-2229-10-160 pmid: 3017786 |
[23] |
Van Wyk S G, Du Plessis M, Cullis C A, Kunert K J, Vorster B J . Cysteine protease and cystatin expression and activity during soybean nodule development and senescence. BMC Plant Biol, 2014,14:294
doi: 10.1186/s12870-014-0294-3 |
[24] | Yuan S, Li R, Wang L, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Zhang X, Chen S, Yang Z, Qiu D, Zhou X . Search for nodulation and nodule development-related cystatin genes in the genome of soybean (Glycine max). Front Plant Sci, 2016,7:1595 |
[25] |
Ke D X, Li X Y, Han Y P, Cheng L, Yuan H Y, Wang L . ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus. Plant Physiol Biochem, 2016,108:488-498
doi: 10.1016/j.plaphy.2016.08.015 pmid: 27592173 |
[26] | 柯丹霞, 李祥永, 彭昆鹏, 韩雅彭 . 百脉根Rac1基因启动子的克隆与表达分析. 信阳师范学院学报(自然科学版), 2018,31:46-51 |
Ke D X, Li X Y, Peng K P, Han Y P . Cloning and expression analysis of the promoter region of Rac1 gene of Lotus japonicus. J Xinyang Normal Univ (Nat Sci Edn), 2018,31:46-51 (in Chinese with English abstract) | |
[27] | Li Y, Zhou L, Li Y, Chen D, Tan X, Lei L, Zhou J . A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytol, 2008,180:185-192 |
[28] |
Sheokand S, Dahiya P, Vincent J L, Brewin N J . Modified expression of cysteine protease affects seed germination, vegetative growth and nodule development in transgenic lines of Medicago truncatula. Plant Sci, 2005,169:966-975
doi: 10.1016/j.plantsci.2005.07.003 |
[29] |
Vincent J L, Brewin N J . Immunolocalization of a cysteine protease in vacuoles, vesicles, and symbiosomes of pea nodule cells. Plant Physiol, 2000,123:521-530
doi: 10.1104/pp.123.2.521 |
[30] | Pfeiffer N E, Torres C M, Wagner F W . Proteolytic activity in soybean root nodules: activity in host cell cytosol and bacteroids throughout physiological development and senescence. Plant Physiol, 1983,71:797-802 |
[31] | Zhang X, Liu S, Takano T . Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol, 2008,68:131-143 |
[32] | Quain M D, Makgopa M E, Cooper J W, Kunert K J, Foyer C H . Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. Phytochemistry, 2015,112:179-187 |
[33] |
柯丹霞, 李祥永 . 结瘤信号途径中相关调控蛋白的研究进展. 信阳师范学院学报(自然科学版), 2015,28:621-626
doi: 10.3969/j.issn.1003-0972.2015.04.038 |
Ke D X, Li X Y . Research progress of key regulatory proteins in nodulation pathway. J Xinyang Normal Univ (Nat Sci Edn), 2015,28:621-626 (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-0972.2015.04.038 |
|
[34] | Ke D X, Fang Q, Chen C F, Zhu H, Chen T, Chang X J, Yuan S L, Kang H, Ma L, Hong Z L, Zhang Z M . Small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus. Plant Physiol, 2012,159:131-143 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|