欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1196-1204.doi: 10.3724/SP.J.1006.2018.01196

• 耕作栽培·生理生化 • 上一篇    下一篇

氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用

石洪亮(),严青青,张巨松(),李春艳,窦海涛   

  1. 新疆农业大学农学院 / 教育部棉花工程研究中心, 新疆乌鲁木齐 830052
  • 收稿日期:2017-11-20 接受日期:2018-06-09 出版日期:2018-08-10 网络出版日期:2018-06-11
  • 通讯作者: 张巨松
  • 基金资助:
    国家重点研发计划项目(2017YFD0101605-05)

Compensation Effect of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield during Cotton Flowering Boll-setting Stage under Non-sufficient Drip Irrigation

Hong-Liang SHI(),Qing-Qing YAN,Ju-Song ZHANG(),Chun-Yan LI,Hai-Tao DOU   

  1. Agriculture College, Xinjiang Agricultural University / Research Center of Cotton Engineering, Urumqi 830052, Xinjiang, China
  • Received:2017-11-20 Accepted:2018-06-09 Published:2018-08-10 Published online:2018-06-11
  • Contact: Ju-Song ZHANG
  • Supported by:
    the National Key Research and Development Program of China(2017YFD0101605-05)

摘要:

研究氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用及其机制, 以期为干旱地区棉花水肥高效利用提供理论依据。以“新陆中54号”为试材, 采用裂区试验设计, 主区为总灌溉量2800 m 3 hm -2(非充分灌溉)和3800 m 3 hm -2(常规灌溉), 副区为4个施氮(纯N)水平(0、150、300和450 kg hm -2)。同一氮肥处理下, 非充分灌溉处理棉花花铃期叶面积指数(LAI)、净光合速率(Pn)、蒸腾速率(Tr)、单株光合产物积累与分配、单株结铃数、单铃重及籽棉产量均低于常规灌溉处理, 但籽棉增产率和灌溉水生产力高于常规灌溉处理; 同一灌溉量下, 随着氮肥施用量的增加, 棉花花铃期LAI和单株光合产物积累量先增后降, 且表现为N450>N300>N150>N0, TrPn、单株光合产物向生殖器官分配比例、单株结铃数、单铃重、籽棉产量、籽棉增产率及灌溉水生产力均表现为N300>N450>N150>N0; 非充分灌溉下增施氮肥的补偿效果随着氮肥用量的增加呈先增加后下降的趋势, N300处理补偿效果最显著, 与常规灌溉处理相比, 补偿效应主要表现在棉花花铃期Pn平均提高10.9%, 单株光合产物积累向生殖积累器官分配比例提高10.7%, 单株结铃数、单铃重、籽棉增产率及灌溉水生产力分别提高5.0%、8.0%、7.1%和7.5%; 氮肥对棉花花铃期光合特性及产量构成因素的影响大于水分。非充分灌溉下氮肥施用量为300 kg hm -2时补偿效应最大, 虽然在产量上有所下降, 但从干旱地区农业缺水的现实考虑, 可准确灌溉施肥, 且籽棉产量较常规灌溉处理仅下降1.3%。因此, 在南疆自然生态条件下, 非充分灌溉下施氮300 kg hm -2时棉花花铃期LAI、TrPn及单株光合产物积累量适宜, 向生殖器官转运补偿效果显著, 具有最大的产量补偿作用, 且节水26.3%。

关键词: 棉花, 非充分灌溉, 氮肥, 光合特性, 灌溉水生产力, 产量, 补偿效应

Abstract:

Cotton cultivar ‘Xinluzhong 54’ was used to study the compensation effect of nitrogen fertilizer on photosynthetic characteristics and yield and its mechanism during cotton flowering boll-setting stage under non-sufficient drip irrigation, so as to provide a theoretical basis for the efficient use of water and fertilizer for cotton in arid area. Split plot experiment design was used, the main area included total drip irrigation amount of 2800 m 3 ha -1 (non-sufficient drip irrigation) and 3800 m 3 ha -1 (conventional drip irrigation), the secondary area had four nitrogen (pure N) levels (0, 150, 300, and 450 kg ha -1). Under the same nitrogen fertilizer treatment, the leaf area index (LAI) of cotton at flowering and boll-setting stage, net photosynthetic rate (Pn), transpiration rate (Tr), accumulation and allocation of photosynthate, boll number of single plant, single boll weight and seed cotton yield of non-sufficient drip irrigation treatment were lower than those of conventional drip irrigation treatment, while seed cotton yield rate and drip irrigation water productivity were higher. Under the same drip irrigation amount, with the increase of nitrogen fertilizer amount, LAI of cotton at flowering and boll-setting stage and photosynthate accumulation increased first and decreased then, showing a trend of N450>N300>N150>N0, and Tr, Pn, allocation proportion of photosynthate to reproductive organ, boll number of single plant, single boll weight, seed cotton yield, seed cotton yield rate and drip irrigation water productivity showed a trend of N300>N450>N150>N0. The compensation effect of increasing nitrogen fertilizer under non-sufficient drip irrigation condition increased first and decreased then with the increase of nitrogen fertilizer amount, the compensation effect of N300 treatment was most significant, Pn of cotton flowering and boll-setting stage Pn increased by 10.9% averagely, the allocation proportion of photosynthate translocated to reproductive organ increased by 10.7%, boll number of single plant, single boll weight, seed cotton yield rate and drip irrigation water productivity increased by 5.0%, 8.0%, 7.1%, and 7.5%, respectively. The influence of nitrogen fertilizer on photosynthetic characteristics and yield components of cotton at flowering and boll-setting stage was greater than that of water. The compensation effect was the maximum when nitrogen fertilizer increased to 300 kg ha -1 under non-sufficient drip irrigation condition, though the yield decreased by 1.3% compared with conventional drip irrigation treatment. Therefore, in natural ecological conditions of South Xinjiang, 300 kg ha -1 nitrogen application with non-sufficient drip irrigation is suitable for cotton at production with better, LAI, Tr, Pn and photosynthate accumulation and translocated compensation effect to reproductive organ, as well as the maximum yield compensation effect and water conservation of 26.3%.

Key words: cotton, non-sufficient drip irrigation, nitrogen fertilizer, photosynthetic characteristics, drip irrigation water productivity, yield, compensation effect

表1

土壤基础理化性质"

年份
Year
土层深度
Soil depth
(cm)
全氮
Total N
(g kg-1)
有机质
Organic matter
(g kg-1)
水解性氮
Hydrolytic N
(mg kg-1)
有效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2015 0-20 0.50 6.90 105.00 32.40 131.00
20-40 0.40 5.60 70.80 21.60 168.00
40-60 0.20 2.20 45.00 2.60 240.00
2016 0-20 0.62 8.00 32.60 24.80 111.00
20-40 0.44 3.00 23.20 6.00 126.00
40-60 0.34 2.00 13.80 1.80 152.00

表2

水、氮分配表"

处理
Treatment
日期 Date (day/month)
10/04-
12/04
16/06-
20/06
23/06-
27/06
30/06-
04/07
07/07-
11/07
14/07-
18/07
21/07-
25/07
28/07-
01/08
04/08-
08/08
11/08-
15/08
18/08-
22/08
灌溉量 Drip irrigation amount
2800 m3 hm-2 168.0 224.0 280.0 336.0 392.0 392.0 336.0 280.0 224.0 168.0
3800 m3 hm-2 228.0 304.0 380.0 456.0 532.0 532.0 456.0 380.0 304.0 228.0
施氮量 Nitrogen application
N0 0 0 0 0 0 0 0 0 0 0 0
N150 30 7.2 9.6 12.0 14.4 16.8 16.8 14.4 12.0 9.6 7.2
N300 60 14.4 19.2 24.0 28.8 33.6 33.6 28.8 24.0 19.2 14.4
N450 90 21.6 28.8 36.0 43.2 50.4 50.4 43.2 36.0 28.8 21.6

图1

棉花花铃期LAI的比较 FP: 初花期; FF: 盛花期; FB: 盛铃期; OB: 吐絮期。"

表3

棉花花铃期功能叶(倒三叶) Pn的比较"

灌溉量
Drip irrigation amount
氮肥处理
N
treatment
2015 2016
初花期
FP
盛花期
FF
盛铃期
FB
吐絮期
OB
初花期
FP
盛花期
FF
盛铃期
FB
吐絮期
OB
2800 m3 hm-2 N0 32.5 e 35.3 f 28.8 d 15.1 f 31.9 f 33.4 f 25.1 d 5.5 d
N150 34.7 d 38.4 d 34.8 c 17.6 de 33.8 de 37.6 de 25.7 d 6.4 cd
N300 40.5 ab 45.9 b 44.8 a 22.7 a 40.5 ab 43.9 ab 42.9 a 9.5 a
N450 38.2 c 43.1 c 41.8 b 19.9 bc 37.8 c 41.3 c 38.0 b 7.3 bc
3800 m3 hm-2 N0 34.1 d 36.6 e 30.1 d 17.1 e 33.5 e 35.8 e 27.1 cd 7.3 bc
N150 35.0 d 38.9 d 35.1 c 18.8 cd 34.8 d 38.8 d 28.1 c 7.7 bc
N300 41.6 a 46.8 a 45.8 a 23.4 a 41.2 a 44.6 a 43.6 a 10.3 a
N450 39.8 b 43.9 c 42.6 b 20.8 b 39.7 b 42.3 bc 38.6 b 8.8 ab

表4

棉花花铃期功能叶(倒三叶)Tr的比较"

灌溉量
Drip irrigation
amount
氮肥处理
N treatment
2015 2016
初花期 FP 盛花期 FF 盛铃期 FB 吐絮期 OB 初花期 FP 盛花期 FF 盛铃期 FB 吐絮期 OB
2800 m3 hm-2 N0 5.2 d 5.7 d 5.5 d 3.1 d 4.6 d 5.1 c 4.4 e 1.8 d
N150 5.5 cd 6.1 d 5.9 cd 3.4 cd 5.4 c 5.9 bc 5.2 d 2.2 de
N300 6.2 ab 7.3 ab 7.1 ab 4.8 ab 6.2 ab 7.0 a 6.9 ab 3.2 ab
N450 5.9 abc 6.8 bc 6.8 b 4.5 b 5.6 bc 6.5 ab 6.1 c 2.6 cd
3800 m3 hm-2 N0 5.6 bcd 6.2 d 6.0 c 3.5 cd 5.8 abc 5.9 bc 5.9 cd 2.5 cd
N150 5.9 abc 6.3 cd 6.2 c 3.7 c 6.1 ab 6.3 ab 6.1 c 2.9 cd
N300 6.4 a 7.7 a 7.2 a 5.0 a 6.4 a 7.2 a 7.1 a 3.3 a
N450 6.2 ab 7.3 ab 7.0 ab 5.0 a 5.9 abc 6.9 a 6.4 bc 3.1 ab

表5

单株棉花吐絮期地上部光合产物积累与分配的比较"

灌溉量
Drip irrigation
amount
氮肥处理
N treatment
2015 2016
光合物质积累
PA (g)
营养器官分配
VOA (%)
生殖器官分配
ROA (%)
光合物质积累
PA (g)
营养器官分配
VOA (%)
生殖器官分配
ROA (%)
2800 m3 hm-2 N0 52.3 h 72.1 a 27.9 h 42.2 h 63.9 a 36.1 h
N150 58.0 f 68.2 c 31.8 f 49.1 g 60.6 c 39.4 f
N300 84.7 d 60.9 g 39.1 b 76.0 c 52.7 g 47.3 b
N450 85.9 c 64.6 e 35.4 d 74.7 d 55.2 e 44.8 d
3800 m3 hm-2 N0 57.4 g 70.2 b 29.8 g 50.4 f 61.7 b 38.3 g
N150 63.0 e 66.8 d 33.2 e 56.6 e 59.1 d 40.9 e
N300 87.9 b 59.6 h 40.4 a 79.9 a 51.9 h 48.1 a
N450 91.8 a 64.3 f 35.7 c 78.4 b 54.6 f 45.4 c

表6

棉花产量构成因素及灌溉水生产力的方差分析"

变异来源
Source of variation
单株结铃数BN 单铃重BW 籽棉产量SCY 灌溉水生产力IWP
MS F MS F MS F MS F
年份 Year (Y) 18.4 460.2** 2.0 102.7** 160534.9 2.8 0 2.6
灌溉 Drip irrigation (W) 0.2 4.1 0 0.8 146835.9 2.6 2.5 408.4**
氮肥 N fertilizer (N) 24.2 201.5** 6.2 106.7** 32525954.1 190.2** 3.2 176.6**
Y×W 0 0 0 0.1 7971.4 0.1 0.0 0.0
Y×N 1.2 10.3** 0.4 5.9** 1984708.9 11.6** 0.2 11.0**
W×N 0.1 0.3 0 0.6 37744.6 0.2 0.1 5.8
Y×W×N 0 0.2 0 0.3 8937.6 0.1 0 0.4
误差 Error 1.3 0.6 1824487.0 0.2

表7

棉花产量构成因素及灌溉水生产力的比较"

年份
Year
灌溉量
Drip irrigation amount
氮肥处理
N treatment
单株结铃数
BN
单铃重
BW (g)
籽棉产量
SCY (kg hm-2)
灌溉水生产力
IWP (kg m-3)
籽棉增产率
SCYR (%)
2015 2800 m3 hm-2 N0 3.8 c 5.2 b 4147.4 c 1.5 c
N150 4.4 b 6.1 a 4796.1 b 1.7 b 13.4 c
N300 5.3 a 6.2 a 5797.5 a 2.1 a 28.2 a
N450 5.1 a 6.2 a 5543.3 a 2.0 a 18.8 abc
3800 m3 hm-2 N0 4.0 c 5.3 b 4321.1 c 1.1 d
N150 4.5 b 6.0 a 4847.5 b 1.3 d 10.7 c
N300 5.4 a 6.2 a 5836.9 a 1.5 c 25.9 a
N450 5.1 a 6.2 a 5618.3 a 1.5 c 22.8 ab
2016 2800 m3 hm-2 N0 4.8 d 5.0 d 3808.4 d 1.4 c
N150 5.3 bc 5.3 c 4479.2 c 1.6 b 14.8 c
N300 6.7 a 5.9 ab 6337.9 ab 2.3 s 39.8 a
N450 6.7 a 5.7 b 6018.3 b 2.2 a 36.6 ab
3800 m3 hm-2 N0 5.0 cd 5.0 d 4041.9 d 1.1 e
N150 5.3 b 5.4 c 4629.7 c 1.2 d 12.6 c
N300 7.0 a 5.9 a 6464.3 a 1.7 b 37.4 ab
N450 6.7 a 5.7 b 6053.6 b 1.6 b 33.2 b
[1] 寇丹, 苏德荣, 吴迪, 李岩 . 地下调亏滴灌对紫花苜蓿耗水、产量和品质的影响. 农业工程学报, 2014,30(2):116-123
doi: 10.3969/j.issn.1002-6819.2014.02.015
Kou D, Su D R, Wu D, Li Y . Effects of regulated deficit irrigation on water consumption, hay yield and quality of alfalfa under subsurface drip irrigation. Trans CSAE, 2014,30(2):116-123 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2014.02.015
[2] 李秧秧, 邵明安 . 小麦根系对水分和氮肥的生理生态反应. 植物营养与肥料学报, 2000,6:383-388
Li Y Y, Shao M A . Physio-ecological response of spring wheat root to water and nitrogen. Plant Nutr Fert Sci, 2000,6:383-388 (in Chinese with English abstract)
[3] Aqueel M A, Leather S R . Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Prot, 2011,30:216-221
[4] Sandhu S S, Mahal S S, Vashist K K, Buttar G S, Brar A S, Singh M . Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India. Agric Water Manage, 2011,104:32-39
[5] 郭相平, 张烈君, 王琴, 郝树荣, 王为木 . 作物水分胁迫补偿效应研究进展. 河海大学学报(自然科学版), 2005,33:634-637
doi: 10.3321/j.issn:1000-1980.2005.06.007
Guo X P, Zhang L J, Wang Q, Hao S R, Wang W M . Advances in compensatory effects response to water stress. J Hohai Univ (Nat Sci Edn), 2005,33:634-637 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-1980.2005.06.007
[6] 赵丽英, 邓西平, 山仑 . 水分亏缺下作物补偿效应类型及机制研究概述. 应用生态学报, 2004,15:523-526
Zhao L Y, Deng X P, Shan L . A review on types and mechanisms of compensation effect of crops under water deficit. Chin J Appl Ecol, 2004,15:523-526 (in Chinese with English abstract)
[7] 褚丽丽, 张忠学 . 氮素营养与水分胁迫对大豆产量补偿效应的影响. 生态学报, 2010,30:2665-2670
Chu L L, Zhang Z X . Effects of nitrogen nutrition and water stress on compensation effect of the yield of soybean. Acta Ecol Sin, 2010,30:2665-2670 (in Chinese with English abstract)
[8] 张立新, 李生秀 . 长期水分胁迫下氮、钾对夏玉米叶片光合特性的影响. 植物营养与肥料学报, 2009,15:82-90
doi: 10.11674/zwyf.2009.0112
Zhang L X, Li S X . Effects of nitrogen and potassium on photosynthetic characteristics of summer maize leaves under long-term water stress. Plant Nutr Fert Sci, 2009,15:82-90 (in Chinese with English abstract)
doi: 10.11674/zwyf.2009.0112
[9] 彭世彰, 蔡敏, 孔伟丽, 徐俊增, 金小平, 宋靖 . 不同生育阶段水分亏缺对水稻干物质与产量的影响. 水资源与水工程学报, 2012,23(1):10-13
Peng S Z, Cai M, Kong W L, Xu J Z, Jin X P, Song J . Effects of water deficit in different growing stages on yield and dry matter of rice. J Water Resour Water Eng, 2012,23(1):10-13 (in Chinese with English abstract)
[10] 蔡一霞, 李洋, 朱海涛, 蔡昆争, 黄飞, 王维 . 灌浆期亏缺灌溉对水稻产量形成的影响. 中国农业科学, 2015,48:1492-1505
doi: 10.3864/j.issn.0578-1752.2015.08.04
Cai Y X, Li Y, Zhu H T, Cai K Z, Huang F, Wang W . Effects of deficit irrigation on the formation of the yield in rice (Oryza sativa) during filling period. Sci Agric Sin, 2015,48:1492-1505 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.08.04
[11] 吴自明, 王竹青, 李木英, 曾蕾, 石庆华, 潘晓华, 谭雪明 . 后期水分亏缺与增施氮肥对杂交稻叶片光合功能的影响. 作物学报, 2013,39:494-505
Wu Z M, Wang Z Q, Li M Y, Zeng L, Shi Q H, Pan X H, Tan X M . Effect of water shortage and increasing nitrogen application on photosynthetic function of different hybrid rice combinations at grain filling stage. Acta Agron Sin, 2013,39:494-505 (in Chinese with English abstract)
[12] 张亚洁, 周彧然, 杜斌, 杨建昌 . 不同种植方式下氮素营养对陆稻和水稻产量的影响. 作物学报, 2008,34:1005-1013
doi: 10.3724/SP.J.1006.2008.01005
Zhang Y J, Zhou Y R, Du B, Yang J C . Effects of nitrogen nutrition on grain yield of upland rice and paddy rice under different cultivation methods. Acta Agron Sin, 2008,34:1005-1013 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01005
[13] 闫曼曼, 郑剑超, 张巨松, 石洪亮, 田立文, 郭仁松, 林涛 . 调亏灌溉对海岛棉生物量和氮素累积分配及产量的影响. 中国生态农业学报, 2015,23:841-850
Yan M M, Zheng J C, Zhang J S, Shi H L, Tian L W, Guo R S, Lin T . Effects of regulated deficit irrigation on accumulation and distribution of biomass and nitrogen, and yield of island cotton. Chin J Eco-Agric, 2015,23:841-850 (in Chinese with English abstract)
[14] 孟兆江, 段爱旺, 王晓森, 高阳, 申孝军 . 调亏灌溉对棉花根冠生长关系的影响. 农业机械学报, 2016,47(4):99-104
doi: 10.6041/j.issn.1000-1298.2016.04.014
Meng Z J, Duan A W, Wang X S, Gao Y, Shen X J . Effect of regulated deficit irrigation on growth relation of root and shoot in cotton. Trans CSAM, 2016,47(4):99-104 (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2016.04.014
[15] 丁汉卿, 赖聪玲, 沈宏 . 干湿交替和过氧化物对水稻根表铁膜及养分吸收的影响. 生态环境学报, 2015,24:1983-1988
Ding H Q, Lai C L, Shen H . Influence of alternative wetting and drying and peroxides on the formation of iron plaque on rice root surface and nutrient uptake. Ecol & Environ, 2015,24:1983-1988 (in Chinese with English abstract)
[16] 赵蓉, 李小军, 赵洋, 杨昊天 . 固沙植被区土壤呼吸对反复干湿交替的响应. 生态学报, 2015,35:6720-6727
doi: 10.5846/stxb201404090690
Zhao R, Li X J, Zhao Y, Yang H T . Response of soil respiration to repeated cycles of drying and rewetting in soils of the sand-fixed region of the tengger desert. Acta Ecol Sin, 2015,35:6720-6727 (in Chinese with English abstract)
doi: 10.5846/stxb201404090690
[17] 张静, 刘娟, 陈浩, 杜彦修, 李俊周, 孙红正, 赵全志 . 干湿交替条件下稻田土壤氧气和水分变化规律研究. 中国生态农业学报, 2014,22:408-413
doi: 10.3724/SP.J.1011.2014.31093
Zhang J, Liu J, Chen H, Du Y X, Li J Z, Sun H Z, Zhao Q Z . Change in soil oxygen and water contents under alternate wetting and drying in paddy fields. Chin J Eco-Agric, 2014,22:408-413 (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2014.31093
[18] 张红星, 王效科, 冯宗炜, 宋文质, 刘文兆, 李双江, 朱元骏, 庞军柱, 欧阳志云 . 干湿交替格局下黄土高原小麦田土壤呼吸的温湿度模型. 生态学报, 2009,29:3028-3035
doi: 10.3321/j.issn:1000-0933.2009.06.031
Zhang H X, Wang X K, Feng Z W, Song W Z, Liu W Z, Li S J, Zhu Y J, Pang J Z , Ou-Yang Z Y. Modeling soil respiration using temperature and soil moisture under alteration of dry and wet at a wheat field in the loess plateau, china. Acta Ecol Sin, 2009,29:3028-3035 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2009.06.031
[19] 薛惠云, 张永江, 刘连涛, 孙红春, 李存东 . 干旱胁迫与复水对棉花叶片光谱、光合和荧光参数的影响. 中国农业科学, 2013,46:2386-2393
doi: 10.3864/j.issn.0578-1752.2013.11.024
Xue H Y, Zhang Y J, Liu L T, Sun H C, Li C D . Responses of spectral reflectance, photosynthesis and chlorophyll fluorescence in cotton during drought stress and rewatering. Sci Agric Sin, 2013,46:2386-2393 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.11.024
[20] 刘瑞显, 郭文琦, 陈兵林, 周治国, 孟亚利 . 氮素对花铃期干旱再复水后棉花纤维比强度形成的影响. 植物营养与肥料学报, 2009,15:662-669
doi: 10.3321/j.issn:1008-505X.2009.03.026
Liu R X, Guo W Q, Chen B L, Zhou Z G, Meng Y L . Effects of nitrogen on cotton specific fibre strength formation under water stress and re-watering during the flowering and boll-forming stages. Plant Nutr Fert Sci, 2009,15:662-669 (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2009.03.026
[21] 牛静 . 花铃期干旱胁迫复水后棉花根系的补偿机制研究. 中国农业科学院硕士学位论文, 北京, 2016
Niu J . Research on the Compensatory Mechanisms of Cotton Root under Drought Stress after Re-watering during the Flowering and Boll-forming Stage. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 ( in Chinese with English abstract)
[22] 石喜, 王密侠, 姚雅琴, 蔡焕杰 . 水分亏缺对玉米植株干物质累积、水分利用效率及生理指标的影响. 干旱区研究, 2009,26:396-400
Shi X, Wang M X, Yao Y Q, Cai H J . Effects of water deficit on dry matter accumulation, wue and physiological indexes of maize. Arid Zone Res, 2009,26:396-400 (in Chinese with English abstract)
[23] 谷晓博, 李援农, 杜娅丹, 吴国军, 周昌明, 任全茂, 杨丹 . 不同施氮水平对返青期水分胁迫下冬油菜补偿效应的影响. 中国生态农业学报, 2016,24:572-581
Gu X B, Li Y N, Du Y D, Wu G J, Zhou C M, Ren Q M, Yang D . Compensative impact of winter oilseed rape (Brassica napus L.) affected by water stress at re-greening stage under different nitrogen rates. Chin J Eco-Agric, 2016,24:572-581 (in Chinese with English abstract)
[24] 王伟, 侯丽丽, 贾永红, 雷荣荣, 刘旭欢, 石书兵 . 水分胁迫下施氮量对春小麦旗叶生理特性的影响. 新疆农业科学, 2013,50:1967-1973
doi: 10.6048/j.issn.1001-4330.2013.11.002
Wang W, Hou L L, Jia Y H, Lei R R, Liu X H, Shi S B . Effect of nitrogen application rate on physiological characteristics in flag leaf of spring wheat under water stress. Xinjiang Agric Sci, 2013,50:1967-1973 (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2013.11.002
[25] 丁红, 张智猛, 戴良香, 慈敦伟, 秦斐斐, 宋文武, 刘孟娟, 付晓 . 水分胁迫和氮肥对花生根系形态发育及叶片生理活性的影响. 应用生态学报, 2015,26:450-456
Ding H, Zhang Z M, Dai L X, Ci D W, Qin F F, Song W W, Liu M J, Fu X . Effects of water stress and nitrogen fertilization on peanut root morphological development and leaf physiological activities. Chin J Appl Ecol, 2015,26:450-456 (in Chinese with English abstract)
[26] 胡程达, 杨光仙, 成林 . 干旱对冬小麦光合产物积累和分配的影响. 中国农业气象, 2014,35(3):243-249
doi: 103969/jissn1000-6362201403002
Hu C D, Yang G X, Cheng L . Effects of drought on distribution and accumulation of photosynthetic matter in winter wheat. Chin J Agric, 2014,35(3):243-249 (in Chinese with English abstract)
doi: 103969/jissn1000-6362201403002
[27] 邵兰军, 陈建军, 王维 . 水分亏缺对烤烟光合特性和氮代谢的影响. 中国农学通报, 2010,26(21):136-141
Shao L J, Chen J J, Wang W . The effect of water deficit on photosynthetic characteristics and nitrogen metabolism at high nitrogen nutrition in flue-cured tobacco (Nicotiana tabacum L.). Chin Agric Sci Bull, 2010,26(21):136-141 (in Chinese with English abstract)
[28] 任妍婷, 吕金印, 成健 . 水分亏缺对不同抗旱性小麦穗部光合及碳同化物转运的影响. 麦类作物学报, 2012,32:683-688
doi: 10.7606/j.issn.1009-1041.2012.04.015
Ren Y T, Lyu J Y, Cheng J . Effects of water deficit on photosynthetic characteristics, accumulation and transportation of 14C-assimilates of ears in wheat . J Triticeae Crops, 2012,32:683-688 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2012.04.015
[29] 时学双, 李法虎, 闫宝莹, 何东, 普布多吉, 曲珍 . 不同生育期水分亏缺对春青稞水分利用和产量的影响. 农业机械学报, 2015,46(10):144-151
Shi X S, Li F H, Yan B Y, He D, Pubu D J, Qu Z . Effects of water deficit at different growth stages on water use and yield of spring highland barley. Trans CSAM, 2015,46(10):144-151 (in Chinese with English abstract)
[30] 魏永胜, 梁宗锁, 田亚梅 . 土壤干旱条件下不同施钾水平对烟草光合速率和蒸腾效率的影响. 西北植物学报, 2002,22:1330-1335
Wei Y S, Liang Z S, Tian Y M . Effect of potassium on tobacco photosynthesis and transpiration efficiency under soil drought stress and different potassium supplied. Acta Bot Boreali- Occident Sin, 2002,22:1330-1335 (in Chinese with English abstract)
[31] 陈新红, 刘凯, 徐国伟, 王志琴, 杨建昌 . 结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响. 上海交通大学学报(农业科学版), 2004,22(1):48-53
Chen X H, Liu K, Xu G W, Wang Z Q, Yang J C . Effects of nitrogen and soil moisture on photosynthetic characters of flag leaf, yield and quality during grain filling in rice. J Shanghai Jiaotong Univ ( Agric Sci Edn), 2004,22(1):48-53 (in Chinese with English abstract)
[32] 许振柱, 于振文, 张永丽 . 土壤水分对小麦籽粒淀粉合成和积累特性的影响. 作物学报, 2003,29:595-600
doi: 10.3321/j.issn:0496-3490.2003.04.022
Xu Z Z, Yu Z W, Zhang Y L . The Effects of soil moisture on grain starch synthesis and accumulation of winter wheat. Acta Agron Sin, 2003,29:595-600 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2003.04.022
[33] Li C Y, Jiang D, Wollenweber B, Li Y, Dai T B, Cao W X . Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci, 2011,180:672-678
doi: 10.1016/j.plantsci.2011.01.009
[34] 郝树荣, 郑姬, 冯远周, 黄聪波, 马丹萍 . 水稻拔节期水氮互作的后效性影响研究. 农业机械学报, 2013,44(3):92-96
doi: 10.6041/j.issn.1000-1298.2013.03.017
Hao S R, Zheng J, Feng Y Z, Huang C B, Ma D P . Aftereffects of water-nitrogen interaction on rice at jointing stage. Trans CSAM, 2013,44(3):92-96 (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2013.03.017
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[11] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[12] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!