欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1221-1228.doi: 10.3724/SP.J.1006.2018.01221

• 耕作栽培·生理生化 • 上一篇    下一篇

低氮诱导小麦灌浆期旗叶衰老与膜脂的关系

李倩1,2(),齐凌云3,4,殷俐娜1,2,3,4,*(),王仕稳1,2,3,4,邓西平1,2,4   

  1. 1 中国科学院大学资源与环境学院, 北京100049
    2 中国科学院水利部水土保持研究所 / 黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西杨凌 712100
    3 西北农林科技大学资源环境学院, 陕西杨凌 712100
    4 西北农林科技大学水土保持研究所, 陕西杨凌 712100
  • 收稿日期:2017-11-09 接受日期:2018-04-11 出版日期:2018-08-10 网络出版日期:2018-05-14
  • 通讯作者: 殷俐娜
  • 基金资助:
    国家自然科学基金项目(31200206);国家科技支撑计划项目(2015BAD22B01);陕西省科技新星项目(2016KJXX-66);中国科学院青年创新促进会项目(2015389)

Relationship between Lipid and Flag Leaf Senescence Induced by Low Nitrogen Stress during Grain Filling of Wheat

Qian LI1,2(),Ling-Yun QI3,4,Li-Na YIN1,2,3,4,*(),Shi-Wen WANG1,2,3,4,Xi-Ping DENG1,2,4   

  1. 1 College of Natural Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Yangling 712100, Shaanxi, China
    3 Institute of Soil and Water Conservation, College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China;
    4 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China;
  • Received:2017-11-09 Accepted:2018-04-11 Published:2018-08-10 Published online:2018-05-14
  • Contact: Li-Na YIN
  • Supported by:
    This study was funded by the National Natural Science Foundation of China(31200206);the National Key Technology R&D Program of China(2015BAD22B01);the Program for Scientific and Technological Star of Shaanxi Province(2016KJXX-66);the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2015389)

摘要:

小麦产量主要来自于小麦灌浆期旗叶的光合产物, 低氮造成的灌浆期旗叶早衰对小麦产量影响极大。本试验以小麦品种“长旱58”为试验材料, 在大田环境下设置低氮(120 kg hm -2)和正常氮(180 kg hm -2)处理, 研究低氮诱导的小麦旗叶衰老与膜脂的关系。结果表明, 开花14 d后, 低氮处理小麦旗叶的光合速率、叶绿素含量、旗叶总氮含量均显著降低; 旗叶中膜脂各组分含量均显著下降, DGDG/MGDG的比值升高; 以C18:3、C18:2为代表的不饱和脂肪酸含量显著下降, 以C16:0为代表的饱和脂肪酸含量显著增加, 不饱和双键指数显著降低; 此外类囊体蛋白质堆积密度也显著降低。综合分析认为低氮处理导致小麦灌浆期旗叶早衰, 早衰过程伴随着膜脂降解和组分改变, 降低了膜的流动性和通透性, 导致叶绿素降解, 使光合功能受损。同时, 植物通过调整DGDG/MGDG比例来响应低氮胁迫, 利用DGDG的双层特性来部分弥补其它双层膜脂的降解对膜功能造成的损伤。

关键词: 小麦, 旗叶, 低氮, 膜脂, 衰老

Abstract:

Nitrogen (N) deficiency induces flag leaf senescence at the grain-filling stage of wheat resulting in yield decrease. In this study, we carried out a field experiment to investigate the relationship between N-deficiency-induced flag leaf senescence and lipid change using wheat variety ‘Changhan 58’. Under the low-N (120 kg ha -1) condition, the photosynthetic rate, chlorophyll content, total N content, and contents of all lipid components of flag leaf at 14 days after flowering were significantly lower than those under normal-N (180 kg ha -1) condition, while the DGDG/MGDG ratio in low-N treatment increased. The content of unsaturated fatty acids, such as C18:3 and C18:2 decreased significantly, whereas the contents of saturated fatty acids, such as C16:0, increased significantly, leading to the reduction of index of unsaturated double bounds. In addition, thylakoid protein packing density also decreased under N-deficiency condition. These results indicate that N-deficiency-induced leaf senescence is characterized with lipid degradation and components changes, which result in negative effects on reductions of membrane permeability, chlorophyll content and photosynthetic rate. Simultaneously, the DGDG/MGDG ratio of plants is adjusted in response to N deficiency to alleviate damages of membrane function caused bby lipid degradation.

Key words: wheat, flag leaf, nitrogen deficiency, membrane lipids, senescence

图1

低氮胁迫对小麦叶片净光合速率和叶绿素含量的影响 柱图显示平均值±标准误(n = 3), 其上不同字母表示处理间差异显著(P < 0.05)。"

图2

低氮胁迫对小麦叶片总氮含量和总氮/叶绿素的影响 柱图显示平均值±标准误(n = 3), 其上不同字母表示两处理差异显著(P < 0.05)。"

图3

低氮胁迫对小麦叶片膜脂含量(A)和DGDG/MGDG (B)的影响 MGDG: 单半乳糖甘油二酯; DGDG: 双半乳糖甘油二酯; PL: 磷脂。柱图显示平均值±标准误(n = 3), 其上不同字母表示NN和LN两处理间差异显著(P < 0.05)。"

图4

低氮胁迫对小麦叶片中膜脂主要脂肪酸组分的影响 A: 单半乳糖甘油二酯的脂肪酸组分; B: 双半乳糖甘油二酯的脂肪酸组分; C: 磷脂的脂肪酸组分; D: 总膜脂的脂肪酸组分。柱图显示平均值±标准误(n = 3), 其上不同字母表示不同脂肪酸组分间差异显著(P < 0.05)。"

图5

低氮胁迫对小麦叶片中膜脂双键指数的影响 DBI: 双键指数; MGDG: 单半乳糖甘油二酯; DGDG: 双半乳糖甘油二酯; PL: 磷脂。柱图显示平均值±标准误(n = 3), 其上不同字母表示NN和LN两处理间差异显著(P < 0.05)。"

图6

低氮胁迫对小麦叶片中膜脂与叶绿素含量比值的影响 MGDG: 单半乳糖甘油二酯; DGDG: 双半乳糖甘油二酯; PL: 磷脂。柱图显示平均值±标准误(n = 3), 其上不同字母表示NN和LN两处理间差异显著(P < 0.05)。"

[1] 李世清, 王瑞军, 张兴昌, 伍维模, 邵明安 . 小麦氮素营养与籽粒灌浆期氮素转移的研究进展. 水土保持学报, 2001,18:106-111
doi: 10.3321/j.issn:1009-2242.2004.03.027
Li S Q, Wang R J, Zhang X C, Wu W M, Shao M A . Research advancement of wheat nitrogen nutrition and nitrogen transportation in wheat grain filling. J Soil Water Conserv, 2001,18:106-111 (in Chinese with English abstract)
doi: 10.3321/j.issn:1009-2242.2004.03.027
[2] Hashimoto H, Kura Hotta M, Katoh S . Changes in protein content and in the structure and number of Chloroplasts during leaf senescence in rice seedlings. Plant Cell Physiol, 1989,30:705-707
[3] Barton R . The production and behavior of phytoferritin particles during senescence of phasolusleave. Planta, 1970,94:73-77
doi: 10.1007/BF00386610 pmid: 24496818
[4] Kolber Z, Falkowski P G . Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion photosystem II. Plant Physiol, 1988,88:923-929
doi: 10.1104/pp.88.3.923
[5] 孙虎 . 氮肥对番茄衰老调控及产量的影响. 北方园艺, 2016,40(24):35-37
Sun H . Effect of nitrogen fertilizer on tomato aging control and production. Northern Hort, 2016,40(24):35-37 (in Chinese with English abstract)
[6] 曾建敏, 崔克辉, 黄见良, 贺帆, 彭少兵 . 水稻生理生化特性对氮肥的反应及与氮利用效率的关系. 作物学报, 2007,33:1168-1176
Zeng J M, Cui K H, Huang J L, He F, Peng S B . Responses of physio-biochemical properties to N-fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.). Acta Agron Sin, 2007,33:1168-1176 (in Chinese with English abstract)
[7] 张绪成, 于显枫, 高世铭 . 氮素对高大气CO2浓度下小麦叶片光合功能的影响. 作物学报, 2010,36:1362-1370
doi: 10.3724/SP.J.1006.2010.01362
Zhang X C, Yu X F, Gao S M . Effects of nitrogen nutrition on photosynthetic function of wheat leaves under elevated atmospheric CO2 concentration. Acta Agron Sin, 2010,36:1362-1370 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01362
[8] Halliwell B. Chloroplast Metablism: The Structure and Function of Chloroplasts in Green Leaf Cells. Oxford: Charenden Press, 1981
[9] 许长成, 邹琦 . 大豆叶片早促衰老及其与膜质过氧化的关系. 作物学报, 1993,19:359-364
Xu C C, Zou Q . The acceleration of senescence of soybean leaves induced by drought and its relation to membrane lipid peroxidation. Acta Agron Sin, 1993,19:359-364 (in Chinese with English abstract)
[10] Chen D, Wang S, Xiong B, Deng X . Carbon/nitrogen imbalance associated with drought-induced leaf senescence in sorghum bicolor. PLoS One, 2015,10:e0137026
doi: 10.1371/journal.pone.0137026 pmid: 4552878
[11] 曹蓓蓓, 王仕稳, 齐凌云, 陈道钳, 殷俐娜, 邓西平 . 小麦苗期叶片碳氮平衡与低氮诱导的叶片衰老的关系. 麦类作物学报, 2017,37:1-7
doi: 10.7606/j.issn.1009-1041.2017.05.14
Cao B B, Wang S W, Qi L Y, Chen D Q, Yin L N, Deng X P . Carbon/nitrogen balance involved in nitrogen deficiency induced leaf senescence in wheat seedling. J Triticeae Crops, 2017,37:1-7 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2017.05.14
[12] Sinclair T R, de Wit C T . Comparative analysis of photosynthate and nitrogen requirements in the production of seeds by various crops. Science, 1975,189:565-567
doi: 10.1126/science.189.4202.565 pmid: 17798304
[13] Wanda Y, Miura K, Wantanabe K . Effect of source to sink ratio on carbohydrate production and senescence of rice flag leaves during the ripening period. Jpn J Crop Sci, 1993,62:547-553
doi: 10.1626/jcs.62.547
[14] 李淑文, 文宏达, 薛宝民, 齐永清, 肖凯 . 小麦高效吸收利用氮素的生理生化特性研究进展, 麦类作物学报, 2003,23(4):131-135
doi: 10.3969/j.issn.1009-1041.2003.04.032
Li S W, Wen H D, Xue B M, Qi Y Q, Xiao K . Advances on the physiological and biochemical characteristics of high nitrogen use efficiency in wheat. J Triticeae Crops, 2003,23(4):131-135 (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-1041.2003.04.032
[15] 赵平, 林克惠, 郑毅 . 氮钾营养对烟叶衰老过程中内源激素与叶绿素含量的影响. 植物营养与肥料学报, 2005,11:379-384
doi: 10.3321/j.issn:1008-505X.2005.03.016
Zhao P, Lin K H, Zheng Y . Effect of N and K nutrition on chlorophyll content and endogenous hormones in the process of tobacco senescence. Plant Nutr Fert Sci, 2005,11:379-384 (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2005.03.016
[16] 王汉忠, 赵福庚, 张国珍 . 多胺延缓植物衰老的机制. 山东农业大学学报, 1995,26:227-232
Wang H Z, Zhao F G, Zhang G Z . Retardation of plant senescence by polyamines. J Shandong Agric Univ, 1995,26:227-232 (in Chinese with English abstract)
[17] Zhang M, Deng X, Yin L, Qi L, Wang X, Wang S, Li H . Regulation of galactolipid biosynthesis by overexpression of the rice MGD gene contributes to enhanced aluminum tolerance in tobacco. Front Plant Sci, 2016,7:337
[18] Block M A, Dorne A J, Joyard J, Douce R . Preparation and characterization of membrane-fractions enriched in outer and inner envelope membranes from spinach-chloroplasts II biochemical-characterization. J Biol Chem, 1983,258:13281-13286
[19] Ohlrogge J, Browse J . Lipid biosynthesis. Plant Cell, 1995,7:957-970
doi: 10.1105/tpc.7.7.957
[20] Harwood J L . Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta, 1996,1301:7-56
doi: 10.1016/0005-2760(95)00242-1 pmid: 8652653
[21] Shimojima M, Watanabe T, Madoka Y, Koizumi R, Masuda K, Yamada K, Masuda S, Ohta H . Differential regulation of two types of monogalactosyldiacylglycerol synthase in membrane lipid remodeling under phosphate-limited conditions in sesame plants. Front Plant Sci, 2013,469:1-10
[22] Wang S, Uddin M I, Tanaka K, Yin L, Shi Z, Qi Y, Mano J, Matsui K, Shimomura N, Sakaki T, Deng X, Zhang S . Maintenance of chloroplast structure and function by overexpression of the rice MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE gene leads to enhanced salt tolerance in tobacco. Plant Physiol, 2014,165:1144-1155
[23] 史中惠, 王仕稳, 殷俐娜, 张梅娟, 邓西平 . 超表达水稻MGD基因(OsMGD)烟草植株的耐低磷胁迫能力. 西北农林科技大学学报(自然科学版) . 2013,41(10):97-104
Shi Z H, Wang S W, Yin L N, Zhang M J, Deng X P . Tolerance of tobacco plants with OsMGD gene to low phosphorus stress. J Northwest A&F Univ(Nat Sci Edn), 2013,41(10):97-104 (in Chinese with English abstract)
[24] Sakaki T, Saito K, Kawaguchi A, Kondo N, Yamada M . Conversion of monogalactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol, 1990,94:766-772
doi: 10.1104/pp.94.2.766
[25] 齐凌云, 张梅娟, 曹蓓蓓, 殷俐娜, 王仕稳, 邓西平 . 小麦苗期叶片膜质组成对低氮胁迫的响应及其与耐低氮的关系. 植物生理学报, 2017,53:1039-1050
Qi L Y, Zhang M J, Cao B B, Yin L N, Wang S W, Deng X P . Effect of nitrogen deficiency on leaf lipid composition in different nitrogen deficiency tolerant wheat (Triticum aestivum) cultivars during seedling stage. Plant Physiol J, 2017,53:1039-1050 (in Chinese with English abstract)
[26] 高俊凤 . 植物生理学试验指导. 北京: 高等教育出版社, 2006. pp 74-77
Gao J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. pp 74-77(in Chinese)
[27] Wang Z, Benning C . Arabidopsis thaliana polar glycerolipid profiling by thin layer chromatography (TLC) coupled with gas-liquid chromatography (GLC). J Vis Exp, 2011,49:e2518
[28] Rawyler A, Pavelic D, Gianinazzi C, Oberson J, Braendle R . Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia. Plant Physiol, 1999,120:293-300
doi: 10.1104/pp.120.1.293
[29] Harwood J L . Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1988,39:101-138
doi: 10.1146/annurev.pp.39.060188.000533
[30] 冯波, 王法宏, 刘延忠, 孔令安, 张宾, 李升东, 司纪升 . 施氮水平对不同栽培模式小麦旗叶衰老及产量的影响. 中国农学通报, 2010,26(8):189-193
Feng B, Wang F H, Liu Y Z, Kong L A, Zhang B, Li S D, Si J S . Effect of nitrogen application on senescence of flag leaf and grain yield in wheat in different planting models. Chin Agric Sci Bull, 2010,26(8):189-193 (in Chinese with English abstract)
[31] 许强, 王彦才, 马宏玮 . 宁夏春小麦缺氮导致减产的生理机理研究. 干旱地区农业研究, 1999,17(3):56-61
Xu Q, Wang Y C, Ma H W . Study on physiological mechanism of the decline in spring wheat production caused by inscofficient nitrogen in Ningxia. Agric Res Arid Areas, 1999,17(3):56-61 (in Chinese with English abstract)
[32] 何萍, 金继运, 林葆 . 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998,31(3):66-71
doi: 10.3321/j.issn:0578-1752.1998.03.012
He P, Jin J Y, Lin B . Effect of n application rates on leaf senescence and its mechanism in spring maize. Sci Agric Sin, 1998,31(3):66-71 (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.1998.03.012
[33] 王亚江, 魏海燕, 颜希亭, 葛梦婕, 孟天瑶, 张洪程, 戴其根, 霍中洋, 许轲, 费新茹 . 光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响. 作物学报, 2014,40:1235-1244
Wang Y J, Wei H Y, Yan X T, Ge M J, Meng T Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Fei X R . Effects of light, nitrogen and their interaction on grain yield and nitrogen, phosphorus and potassium absorption in japonica super rice. Acta Agron Sin, 2014,40:1235-1244 (in Chinese with English abstract)
[34] 禹晓梅, 王荣, 李唯奇 . 拟南芥角果衰老过程中膜脂的变化. 植物分类与资源学报, 2014,36:177-186
doi: 10.7677/ynzwyj201413107
Yu X M, Wang R, Li W Q . Changes in membrane lipids during silique senescence in Arabidopsis. Plant Diversity Resour, 2014,36:177-186 (in Chinese with English abstract)
doi: 10.7677/ynzwyj201413107
[35] Douce R, Joyard J. Lipids: structure and function. New York: Academic Press, 1980. pp 221-225
[36] Gasulla F, vom Dorp K, Dombrink I, Dormann P, Bartels D . The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. Plant J, 2013,75:726-741
[37] Kirchhoff H, Sharpe R M, Herbstova M, Yarbrough R, Edwards G E . Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C3 and C4 plants. Plant Physiol, 2013,161:497-507
doi: 10.1104/pp.112.207548
[38] Haferkamp S, Kirchhoff H . Significance of molecular crowding in grana membranes of higher plants for light harvesting by photosystem II. Photosynth Res, 2008,95:129-134
doi: 10.1007/s11120-007-9253-2
[39] 胡锋, 黄俊丽, 秦峰, 岳彩黎, 王贵学 . 植物叶绿体类囊体膜及膜蛋白研究进展. 生命科学, 2011,23:291-198
Hu F, Huang J L, Qin F, Yue C L, Wang G X . Progress in chloroplast thylakoid membrane and membrane proteins. Chin Bull Life Sci, 2011,23:291-198 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!