欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 310-315.doi: 10.3724/SP.J.1006.2019.83034

• 研究简报 • 上一篇    下一篇

不同玉米杂交品种吐丝持续期特性及其对播期的响应

刘月娥,吕天放,赵久然(),王荣焕(),徐田军,陈传永,张译天,王元东,刘秀芝   

  1. 北京市农林科学院玉米研究中心 / 玉米DNA指纹及分子育种北京市重点实验室, 北京100097
  • 收稿日期:2018-04-18 接受日期:2018-10-08 出版日期:2019-02-12 网络出版日期:2018-11-05
  • 通讯作者: 赵久然,王荣焕
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300106);本研究由国家重点研发计划项目(2017YFD0101104);国家自然科学基金项目(31601247);国家现代农业产业技术体系专项(CARS-02-11);北京市农林科学院青年科研基金项目(QNJJ201728);北京市农林科学院院级科技创新团队建设项目资助(JNKYT201603)

Silking duration characteristics in different maize hybrids and its response to sowing date

Yue-E LIU,Tian-Fang LYU,Jiu-Ran ZHAO(),Rong-Huan WANG(),Tian-Jun XU,Chuan-Yong CHEN,Yi-Tian ZHANG,Yuan-Dong WANG,Xiu-Zhi LIU   

  1. Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
  • Received:2018-04-18 Accepted:2018-10-08 Published:2019-02-12 Published online:2018-11-05
  • Contact: Jiu-Ran ZHAO,Rong-Huan WANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300106);This study was supported by the National Key Research and Development Program of China(2017YFD0101104);the National Natural Science Foundation of China(31601247);the China Agriculture Research System(CARS-02-11);the Youth Research Fund of the Beijing Academy of Agriculture and Forestry Sciences(QNJJ201728);and the Innovative Team Construction Project of BAAFS(JNKYT201603)

摘要:

吐丝期是决定玉米产量的关键时期, 研究其相关特性, 对玉米生产意义重大。为准确分析不同玉米品种吐丝特性的差异及其对播期的响应, 于2014年和2015年设置了3个玉米主推品种(郑单958、先玉335和京科968)的3个播期处理(早播: 4月10日, 中播: 5月10日, 晚播: 6月10日), 分析了各个处理间吐丝持续期的差异以及吐丝持续期与雌穗穗长变异及产量构成因素的关系。结果表明: (1)群体吐丝持续期在品种间存在显著差异, 表现为先玉335 (9.12 d) >郑单958 (8.94 d) >京科968 (7.68 d)。随时间推进, 玉米每天吐丝的比例与天数为先升高后降低的二次函数关系, 每天最大吐丝比例为先玉335 (16.51%)<郑单958 (17.07%)<京科968 (19.98%)。京科968较郑单958和先玉335呈现吐丝集中, 每天吐丝比例较高、吐丝持续期短的特点; (2)吐丝持续期在不同播期间差异显著, 郑单958、先玉335和京科968不同播期间的吐丝持续期变幅分别为8.10~9.55 d、7.54~10.53 d和6.65~8.66 d, 郑单958的吐丝持续期在不同播期间最稳定(CV=6.57%), 其次为京科968 (CV=9.40%), 先玉335的吐丝持续期在不同播期间的变化最不稳定(CV=11.68%); (3)吐丝持续期与雌穗穗长的变异系数呈显著正相关, 与产量和穗粒数呈显著负相关, 与千粒重不相关。播期对玉米吐丝持续期具有显著的调控作用。随吐丝持续期增加, 玉米雌穗穗长的变异系数显著增大, 群体果穗的整齐度降低, 穗粒数显著减少, 是玉米产量显著降低的主要原因。

关键词: 玉米, 品种, 吐丝持续期, 播期, 产量

Abstract:

Silking is an important growth stage and has important effects on maize (Zea mays L.) yield. The research of silking characteristics plays a fundamental role in maize productivity. To examine the silking characteristics difference of different maize hybrids and its responses to sowing date, we conducted an experiment with three sowing date (4/10, 5/10, 6/10) treatments using the most widely cultivated maize hybrids of Zhengdan 958 (ZD958), Xianyu 335 (XY335), and Jingke 968 (JK968). The silking duration difference between different hybrids and the relationship of silking duration with ear length variation and yield components were analyzed. The significant differences were found in silking durations with an order of XY335 (9.12 d) > ZD958 (8.94 d) > JK968 (7.68 d). The silking ratio per day was well correlated with days to silking (P < 0.05), A non-linear positive relationship existed between silking ratio per day (y) and days to silking (x). The highest silking ratio per day showed an order of XY335 (16.51%) < ZD958 (17.07%) < JK968 (19.98%). Significant differences of silking duration were found between different sowing date treatments. The silking durations of ZD958, XY335, and JK968 in different sowing date treatment ranged from 8.10 d to 9.55 d (CV = 6.57%), from 7.54 d to 10.53 d (CV = 9.40%), from 6.55 d to 8.66 d (CV = 11.68%), respectively. Silking duration significantly and positively correlated the coefficient of variation of ear length, and negatively correlated with yield and kernel number per ear. No significant correlation was found between silking duration and 1000-kernel weight. Sowing date has significant effects on silking duration. With increasing silking duration , the coefficient of variation of ear length is increased significantly, the uniformity of ear length and kernel number per ear are decreased, resulting in maize yield decrease significantly.

Key words: maize, hybrid, silking duration, sowing date, yield

图1

不同玉米品种每天吐丝比例的变化 **和*表示在0.01和0.05水平显著相关。"

表1

不同玉米品种的吐丝持续期"

品种
Hybrid
2014 2015 平均值
Average (d)
变异系数
Coefficient of variation (%)
May 10 June 10 April 10 May 10 June 10
郑单958 Zhengdan 958 9.23 8.10 9.24 9.55 8.59 8.94 a 6.57
先玉335 Xianyu 335 7.54 9.02 9.25 10.53 9.25 9.12 a 11.68
京科968 Jingke 968 6.65 7.54 7.67 8.66 7.89 7.68 b 9.40

表2

不同玉米品种抽雄吐丝日期及抽雄吐丝间隔"

年份
Year
播期
Sowing date
(month/day)
品种
Cultivar
抽雄日期
Tasseling date
(month/day)
吐丝日期
Silking date
(month/day)
抽雄吐丝间隔
Interval between tasseling and silking (d)
2014 5/10 郑单958 Zhengdan 958 7/8 7/9 1
先玉335 Xianyu 335 7/10 7/8 2
京科968 Jingke 968 7/10 7/11 1
6/10 郑单958 Zhengdan 958 8/3 8/5 2
先玉335 Xianyu 335 8/4 8/5 1
京科968 Jingke 968 8/6 8/8 2
2015 4/10 郑单958 Zhengdan 958 6/22 6/26 4
先玉335 Xianyu 335 6/23 6/25 2
京科968 Jingke 968 6/23 6/27 4
5/10 郑单958 Zhengdan 958 7/10 7/12 2
先玉335 Xianyu 335 7/9 7/11 2
京科968 Jingke 968 7/12 7/14 2
6/10 郑单958 Zhengdan 958 8/4 8/6 2
先玉335 Xianyu 335 8/5 8/6 1
京科968 Jingke 968 8/3 8/5 2

图2

玉米吐丝持续期与雌穗穗长变异的相关分析 ** 和*表示在0.01和0.05水平显著相关。"

图3

玉米吐丝持续期与产量构成因素的相关分析 **和*表示在0.01和0.05水平显著相关。"

[1] Borrás L, Westgate M E, Astini J P, Echarte L E . Coupling time to silking with plant growth rate in maize. Field Crops Res, 2007,102:73-85.
doi: 10.1016/j.fcr.2007.02.003
[2] Gabaldon L C, Webber H, Otegui M E, Slafer G A, Ordonez R A, Gaiser T, Lorite I J, Ruiz R M, Ewert F . Modelling the impact of heat stress on maize yield formation. Field Crops Res, 2016,198:226-237.
doi: 10.1016/j.fcr.2016.08.013
[3] Liu G, Hou P, Xie R, Ming B, Wang K, Liu W, Yang Y, Li S . Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha -1 . Field Crops Res, 2017,213:221-230.
doi: 10.1016/j.fcr.2017.08.011
[4] Paponov I A, Sambo P, Erley G S, Presterl T, Geiger H H, Engels C . Kernel set in maize genotypes differing in nitrogen use efficiency in response to resource availability around flowering. Plant Soil, 2005,272:101-110.
doi: 10.1007/s11104-004-4210-8
[5] Jia S F, Li C F . Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level. J Integr Agric, 2011,10:58-69.
doi: 10.1016/S1671-2927(11)60307-6
[6] 张仁和, 郭东伟, 张兴华, 海东, 刘建超, 李凤艳, 郝引川, 薛吉全 . 吐丝期干旱胁迫对玉米生理特性和物质生产的影响. 作物学报, 2012,38:1884-1890.
doi: 10.3724/SP.J.1006.2012.01884
Zhang R H, Guo D W, Zhang X H, Lu H D, Liu J C, Li F Y, Hao Y C, Xue J Q . Effect of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agron Sin, 2012,38:1884-1890 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01884
[7] 陈春梅, 高聚林, 苏治军, 于晓芳, 胡树平, 赵晓亮 . 玉米自交系吐丝期叶片光合参数与其耐旱性的关系. 作物学报, 2014,40:1667-1676.
doi: 10.3724/SP.J.1006.2014.01667
Chen C M, Gao J L, Su Z J, Yu X F, Hu S P, Zhao X L . Relationship between leaf photosynthetic parameters and drought resistance at silking stage in maize inbred lines. Acta Agron Sin, 2014,40:1667-1676 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01667
[8] Ren B, Cui H, Camberato J J, Dong S, Liu P, Zhao B, Zhang J . Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize. Naturwissenschaften, 2016,103:67.
doi: 10.1007/s00114-016-1392-x pmid: 27437706
[9] Beavis W D, Smith O S, Grant D, Fincher R R . Identification of quantitative trait loci using a small sample of top crossed and F4 progeny from maize. Crop Sci, 1994,34:882-896.
doi: 10.2135/cropsci1994.0011183X003400040010x
[10] Veldboom L R, Lee M . Molecular-marker-facilitated studies of morphological traits in maize. II: Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994,89:451-458.
doi: 10.1007/BF00225380 pmid: 24177894
[11] Berke T G, Rocheford T R . Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995,35:1542-1549.
doi: 10.2135/cropsci1995.0011183X003500060004x
[12] Agrama H A S, Moussa M E . Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica, 1996,91:89-97.
doi: 10.1007/BF00035278
[13] Kozumplik V, Pejic I, Senior L, Pavlina R, Graham G I, Stuber C W . Use of molecular markers for QTL detection in segregating maize populations derived from exotic germplasm. Maydica, 1996,41:211-217.
[14] Ribaut J, Hoisington D, Deutsch J A, Jiang C Z, Gonzalez de Leon D . Identification of quantitative trait loci under drought conditions in tropical maize: 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet, 1996,92:905-914.
doi: 10.1007/BF00221905 pmid: 24166558
[15] Veldboom L R, Lee M . Genetic mapping of qunatitative trait loci in maize in stress and nonstress environments: II. Plant height and flowering. Crop Sci, 1996,36:1320-1327.
doi: 10.2135/cropsci1996.0011183X003600050041x
[16] Rebai A, Blanchard P, Perret D, Vincourt P . Mapping quantitative trait loci controlling silking date in a diallel cross among four lines of maize. Theor Appl Genet, 1997,95:451-459.
doi: 10.1007/s001220050582
[17] Khairallah M, Bohn M, Jiang C Z, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez de Leon D, Hoisington D . Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 1998,117:309-318.
doi: 10.1111/j.1439-0523.1998.tb01947.x
[18] Xie H, Ding D, Cui Z, Wu X, Hu Y, Liu Z, Li Y, Tang J . Genetic analysis of the related traits of flowering and silk for hybrid seed production in maize. Genes Genomics, 2010,32:55-61.
doi: 10.1007/s13258-010-0801-3
[19] Wang Y, Cui Y, Zhang L, Li J, Liu J, Wang R . Effects of syncrhonization between silk receptivity and pollen grain vigor on kernel sets of corn (Zea mays L.). Front Agric China, 2007,1:271-275.
doi: 10.1007/s11703-007-0046-3
[20] 李金才, 董海荣, 崔彦宏 . 不同花位间玉米花丝生长发育动态的研究. 河北农业大学学报, 2003,26(2):1-4.
doi: 10.3969/j.issn.1000-1573.2003.02.001
Li J C, Dong H R, Cui Y H . Study on the dynamics of growth and development of maize silks in different flower positions. J Agric Univ Hebei, 2003,26(2):1-4 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-1573.2003.02.001
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!