欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 225-234.doi: 10.3724/SP.J.1006.2019.083033

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位

牟碧涛1,2,赵卓凡1,岳灵1,李川1,张钧3,李章波3,申汉3,曹墨菊1,*()   

  1. 1四川农业大学玉米研究所 / 农业部西南玉米生物学与遗传育种重点实验室, 四川成都 611130
    2宜宾市农业科学院食用菌蚕桑研究所, 四川宜宾 644000
    3内蒙古真金种业科技有限公司, 内蒙古鄂尔多斯 014300
  • 收稿日期:2018-04-16 接受日期:2018-10-08 出版日期:2019-02-12 网络出版日期:2018-11-05
  • 通讯作者: 曹墨菊
  • 基金资助:
    本研究由“十三五”国家重点研发计划项目资助(2016YFD0101206)

Identification of fertility restoration and molecular mapping of restorer genes in two maize restore lines of CMS-C

Bi-Tao MOU1,2,Zhuo-Fan ZHAO1,Ling YUE1,Chuan LI1,Jun ZHANG3,Zhang-Bo LI3,Han SHEN3,Mo-Ju CAO1,*()   

  1. 1 Maize Research Institute, Sichuan Agricultural University / Key Laboratory of Maize Biology and Genetics and Breeding of Southwest China, Ministry of Agriculture, Chengdu 611130, Sichuan, China
    2 Edible Fungus Sericulture Research Institute, Yibin Academy of Agricultural Sciences, Yibin 644000, Sichuan, China
    3 Inner Mongolia Zhenjin Seed S&T Co., Ltd, Ordos 014300, Inner Mongolia, China;
  • Received:2018-04-16 Accepted:2018-10-08 Published:2019-02-12 Published online:2018-11-05
  • Contact: Mo-Ju CAO
  • Supported by:
    This study was supported by the National Thirteenth Five-Year National Research and Development Program(2016YFD0101206)

摘要:

为了发掘更多玉米C型不育胞质的强恢复系资源, 本研究对2份自交系Z16和7250-14-1进行了恢复能力的测定、恢复基因的遗传分析及恢复基因的分子标记定位。结果表明, Z16和7250-14-1对C黄早四、C478、C698-3和CMo17均表现为育性恢复, 而对C48-2则均表现为育性部分恢复。通过对玉米CMS-C不同亚组胞质测交鉴定发现, Z16对G48-2、EC48-2、ES48-2、RB48-2及类48-2均表现为不育性保持, 而7250-14-1对G48-2、EC48-2、ES48-2表现为育性部分恢复, 对RB48-2和类48-2则表现为不育性保持。Z16和7250-14-1对CMS-T不育系均表现为不育性保持, 而对CMS-S不育系则均表现为育性部分恢复。遗传分析显示, Z16对C478和C黄早四的育性恢复均受1对基因控制; 而7250-14-1对C黄早四及C478的育性恢复分别受1对基因及2对基因控制。利用(C黄早四×Z16)F2、(C黄早四×7250-14-1)F2群体分别对恢复基因进行分子标记定位, 其中Z16的恢复基因被定位于标记B-1至第8染色体短臂末端区域, 物理距离为494 kb; 7250-14-1的恢复基因被定位于第8染色体短臂的标记B-1和Chr8-86080之间, 物理距离为249 kb。该研究不仅为玉米CMS-C“三系”配套的生产利用提供了恢复基因资源, 也为玉米CMS-C恢复基因的克隆及恢复机制的研究奠定了一定基础。

关键词: 玉米, 细胞质雄性不育, 恢复基因, 分子标记定位

Abstract:

The objective of the present study was to identify novel and powerful restorer lines for CMS-C. So maize inbred lines Z16 and 7250-14-1 were crossed with both isonuclear alloplasmic and isoplasmic allonuclear CMS-C, CMS-T, and CMS-S male sterile lines. Self-cross and back-cross were conducted for some of the fertility restored F1 for genetic analysis and restorer gene mapping. Male fertility expression was investigated for all the F1, F2 and backcross populations, showing that Z16 and 7250-14-1 could restore the fertility for C Huangzaosi, C478, C698-3, and CMo17 completely, and partly restore the fertility for C48-2. Z16 could not restore the fertility for G48-2, EC48-2, ES48-2, RB48-2, and Lei48-2, while 7250-14-1 could partly restore the fertility for G48-2, EC48-2, and ES48-2, and maintain the sterility for RB48-2 and Lei48-2. Both Z16 and 7250-14-1 couldn’t restore the fertility of CMS-T, and partly restore the fertility for CMS-S. Genetic analysis showed that the fertility restoration was controlled by a pair of dominant genes for Z16 when crossed with C478 or C Huangzaosi. But for 7250-14-1, the fertility restoration was controlled by a pair of dominant genes for C Huangzaosi, and two pairs of complementary dominant genes for C478. Both of the restorer genes for Z16 and 7250-14-1 were mapped on the short arm of chromosome 8 by molecular markers. For Z16, it was mapped within a physical distance of 494 kb from the marker B-1 to the end of the chromosome, and for 7250-14-1, it was located between B-1 and Chr8-86080, with physical distance of 249 kb. This study not only provides some information for the practical application of Z16 and 7250-14-1, but also lays a foundation for the cloning and functional analysis of restorer genes.

Key words: maize, cytoplasmic male sterility, restorer gene, molecular mapping

表1

玉米同核异质、同质异核不育系"

C型不育系
CMS-C
T型不育系
CMS-T
S型不育系
CMS-S
C型亚组不育系
CMS-C subgroup
CMo17 TMo17 SMo17 G48-2
C698-3 T698-3 S698-3 EC48-2
C黄早四
C Huangzaosi
ES48-2
C478 RB48-2
C48-2 类48-2 Lei 48-2

图1

部分测交组合的育性表现 I: 花药不外露; II: 花药外露比例为0~25%; III: 花药外露比例为25%~50%; IV: 花药外露比例为50%~75%; V: 花药外露比例为75%~100%。"

表2

CMS-C不育系与Z16测交后代的育性鉴定结果"

组合
Combination
雄穗育性等级 Fertility grade of tassel 花粉可染率 Pollen staining rate
I II III IV V 可染
Fully staining (%)
半染
Semi-staining (%)
不染
Not staining (%)
CMo17×Z16 0 0 0 0 28 98.6 0 1.4
C698-3×Z16 0 0 0 0 25 96.7 0 3.3
C黄早四×Z16 C Huangzaosi×Z16 0 0 0 0 29 97.4 0 2.6
C478×Z16 0 0 0 0 28 97.8 0 2.2
C48-2×Z16 0 4 24 0 0 39.0 26.9 34.1
G48-2×Z16 28 0 0 0 0 0 0 100
EC48-2×Z16 30 0 0 0 0 0 0 100
ES48-2×Z16 29 0 0 0 0 - - -
RB48-2×Z16 28 0 0 0 0 - - -
类48-2×Z16 Lei48-2×Z16 28 0 0 0 0 - - -

表3

CMS-T、CMS-S不育系与Z16测交后代的育性鉴定结果"

组合
Combination
雄穗育性等级Fertility grade of tassel 花粉可染率Pollen staining rate
I II III IV V 可染
Fully staining (%)
半染
Semi-staining (%)
不染
Not staining (%)
TMo17×Z16 28 0 0 0 0
T698-3×Z16 29 0 0 0 0
SMo17×Z16 0 5 24 0 0 22.0 12.1 65.9
S698-3×Z16 30 0 0 0 0 29.2 33.3 37.5

表4

CMS-C不育系与7250-14-1测交后代的育性鉴定结果"

组合
Combination
雄穗育性等级Fertility grade of tassel 花粉可染率Pollen staining rate
I II III IV V 可染
Fully staining (%)
半染
Semi-staining (%)
不染
Not staining (%)
CMo17×7250-14-1 0 0 0 0 28 96.6 3.3 0
C698-3×7250-14-1 0 0 0 0 29 91.9 2.7 5.4
C黄早四×7250-14-1
C Huangzaosi×7250-14-1
0
0
0
0
30
98.8
0
1.2
C478×7250-14-1 0 0 0 0 29 97.8 0 2.2
C48-2×7250-14-1 0 0 29 0 0 83.3 11.1 5.6
G48-2×7250-14-1 0 0 28 0 0 94.1 0 5.9
EC48-2×7250-14-1 0 0 28 0 0 22.6 25.0 52.4
ES48-2×7250-14-1 0 2 26 0 0 96.6 0 3.4
RB48-2×7250-14-1 29 0 0 0 0 0 0 100
类48-2×7250-14-1
Lei48-2×7250-14-1
28
0
0
0
0
0
0
100

表5

CMS-T、CMS-S不育系与7250-14-1测交后代的育性鉴定结果"

组合
Combination
雄穗育性等级Fertility grade of tassel 花粉可染率Pollen staining rate
I II III IV V 可染
Fully staining (%)
半染
Semi-staining (%)
不染
Not staining (%)
TMo17×7250-14-1 29 0 0 0 0
T698-3×7250-14-1 29 0 0 0 0
SMo17×7250-14-1 0 0 0 29 0 14.1 15.3 70.6
S698-3×7250-14-1 0 0 0 28 0 43.9 43.9 12.2

表6

不育系与自交系Z16杂交后代的育性调查结果"

组合
Combination
可育株
No. of fertile plants
不育株
No. of sterile plants
总株数
Total No. of
plants
理论比例
Theoretical
ratio
χ2 年份和地点
Year and place
(C黄早四×Z16)F2
(C Huangzaosi×Z16) F2
287 115 402 3:1 1.33 2016景洪 Jinghong
299 106 405 3:1 0.15 2017温江 Wenjiang
1820 616 2436 3:1 0.05 2017崇州 Chongzhou
(C黄早四×Z16)×黄早四
(C Huangzaosi×Z16)×Huangzaosi
33 36 69 1:1 0.06 2016温江 Wenjiang
98 107 205 1:1 0.20 2017温江 Wenjiang
(C478×Z16)F2 251 107 358 3:1 2.15 2017温江 Wenjiang
(C478×Z16)×478 134 135 269 1:1 0 2017温江 Wenjiang

表7

不育系与自交系7250-14-1杂交后代的育性调查结果"

组合
Combination
可育株
No. of fertile plants
不育株
No. of sterile plants
总株数
Total No. of
plants
期望比例
Theoretical
ratio
χ2 年份、地点
Year and place
(C黄早四×7250-14-1)F2
(C Huangzaosi×7250-14-1) F2
271 85 356 3:1 0.12 2016景洪 Jinghong
319 104 423 3:1 0.02 2017温江 Wenjiang
1386 475 1861 3:1 0.14 2017崇州 Chongzhou
(C黄早四×7250-14-1)×黄早四
(C Huangzaosi×7250-14-1) ×Huangzaosi
23 22 45 1:1 0 2016温江 Wenjiang
124 141 265 1:1 0.55 2017温江 Wenjiang
(C478×7250-14-1)F2 163 110 273 9:7 1.19 2016温江 Wenjiang
243 159 392 9:7 1.44 2017温江 Wenjiang
(C478×7250-14-1)×478 59 191 247 1:3 0.37 2017温江 Wenjiang

附表1

用于Z16恢复基因定位的多态性引物"

引物
Primer
引物类型
Primer type
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
Chr8-86080 InDel CGTCGTTGAGGTGAGAAGAG CTCCGAACCTGATCCGAGTA
B-2 InDel ACGAATACGATACGTAGCCA GTGAATCTGCGGTGAACAAA
B-6-1 InDel GGATGGAATATATAAAGTTTGCT GGCTCATTACCTTGGTGTCA
B-1 InDel GATCGTTCCGGCCCAAGAAG TAGCCGTGGAGTTGGTAGCC
m-1 SSR CATTGACCGGGGTAGGAAGT CATTGACCGGGGTAGGAAGT
TIDP5557 InDel CATGAGATCAACGGGATGC AGTAGAGATCCGGGAGGTGG
Chr8-1330080 InDel CCAAGTTGGATACAACGACAGA AGAAGCAACGTCTGCAGGAT
IDP8573 InDel CGAGTCAGTTGCTTACGGG AATTGCCGAGTGGATACAGG

图2

自交系Z16所含Rf基因在第8染色体上的连锁图谱"

图3

自交系7250-14-1所含Rf基因在第8染色体上的连锁图谱"

附表2

用于7250-14-1恢复基因定位的多态性引物"

引物
Primer
引物类型
Primer type
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
m-10 SSR AGCGCTCGATTCCTGTAGTG GGGTGTCGTTGGTTGGGATT
Chr8-86080 InDel CGTCGTTGAGGTGAGAAGAG CTCCGAACCTGATCCGAGTA
B-2 InDel ACGAATACGATACGTAGCCA GTGAATCTGCGGTGAACAAA
B-6-2 InDel CCAATGTTTTGATGGAAGTCCT AATTGCCATGTTCTTACCTGT
B-1 InDel GATCGTTCCGGCCCAAGAAG TAGCCGTGGAGTTGGTAGCC
Chr8-398180 InDel GCCAGTTCGGAGACAGGAT ACCGCCATCCAATTAACAAG
IDP8319 InDel TTGACCCTCCTGTTACGTGC GAGCATGGACCACATGACC
IDP500 InDel CACTGCCGTAGAGTAGTGCG GGCTTCAAGATCAGTCCG
IDP7866 InDel GGACGAAGCGATCGAGTACC AGATGAGGGAAGTGAGCAGC
Chr8-1330080 InDel CCAAGTTGGATACAACGACAGA AGAAGCAACGTCTGCAGGAT
[1] Beckett J B . Classification of male-sterile cytoplasms in maize. Crop Sci, 1971,11:724-727.
[2] Pring D R, Conde M F, Levings C S I . DNA heterogeneity within the C group of maize male-sterile cytoplasms. Crop Sci, 1980,20:159-162.
doi: 10.2135/cropsci1980.0011183X002000020002x
[3] Duvick D N, Snyder R J, Anderson E G . The chromosomal location of Rf1, a restorer gene for cytoplasmic pollen sterile maize. Genetics, 1961,46:1245-1252.
doi: 10.2135/cropsci1969.0011183X000900020012x pmid: 13888759
[4] Snyder R J, Duvick D N . Chromosomal location of Rf2, a restorer gene for cytoplasmic male sterile corn. Crop Sci, 1969,9:156-157.
[5] Wise R P, Schnable P S . Mapping complementary genes in maize: positioning the rf1 and rf2 nuclear-fertility restorer loci of Texas (T) cytoplasm relative to RFLP and visible markers. Theor Appl Genet, 1994,88:785-795.
doi: 10.1007/bf01253987 pmid: 24186179
[6] Cui X Q, Wise R P, Schnable P S . The rf2 nuclear restore gene of male-sterile T-cytoplasm maize. Science, 1996,272:1334-1336.
[7] Zhang Z F, Wang Y, Zheng Y L . AFLP and PCR-based markers linked to Rf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Mol Genet Genomics, 2006,276:162-169.
doi: 10.1007/s00438-006-0131-y pmid: 16705419
[8] 李鹏, 肖森林, 王淑霞, 刘娟, 赵贤容, 陈化榜 . 玉米S型细胞质雄性不育恢复基因Rf3的精细定位及其候选基因预测. 山东农业科学, 2014, ( 8):1-5.
doi: 10.3969/j.issn.1001-4942.2014.08.001
Li P, Xiao S L, Wang S X, Liu J, Zhao X R, Chen H B . Fine mapping of fertility restorer gene Rf3 of S-type cytoplasmic male sterility and candidate gene prediction in maize. Shandong Agric Sci, 2014, ( 8):1-5 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-4942.2014.08.001
[9] Feng Y, Zheng Q, Song H, Wang Y, Wang H, Jiang L J, Yan J B, Zheng Y L, Yue B . Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theor Appl Genet, 2015,128:2341-2350.
[10] Kheyr-pour A, Gracen V E, Everett H L . Genetics of fertility restoration in the C-group of cytoplasmic male sterility in maize. Genetics, 1981,98:379-388.
doi: 10.1007/BF00135050 pmid: 17249089
[11] 陈伟程, 罗福和, 季良越 . 玉米C型胞质雄花不育的遗传及其在生产上的应用. 作物学报, 1979,5:21-28.
Chen W C, Luo F H, Ji L Y . Some genetic aspects of the C-type cytoplasmic male-sterility in maize and its use in breeding. Acta Agron Sin, 1979,5:21-28 (in Chinese with English abstract).
[12] Vidakovic M . Genetics of fertility restoration in cytoplasmic male sterility of the C-type (cms-C) in maize. Maydica, 1988,33:51-64.
[13] Vidakovic M, Vancetovic J . Complementary genes Rf4, Rf5 and Rf6 are not the unique genetic system for fertility restoration in cms-C of maize(Zea mays L.). Maize Genet Coop Newsl, 1997,71:10.
[14] Vidakovic M, Vancetovic J . The existence of a duplicated or parallel genetic system for fertility restoration in cms C (C cytoplasmic male sterility) of maize (Zea mays L.). Maydica, 1997,42:313-316.
[15] Sisco P H . Duplications complicate genetic mapping of Rf4, a restorer gene for cms-C cytoplasmic male sterility in corn. Crop Sci, 1991,31:1263-1266.
doi: 10.2135/cropsci1991.0011183X003100050036x
[16] 汤继华, 刘宗华, 陈伟程, 胡彦民, 季洪强, 季良越 . 玉米C型胞质不育恢复主基因SSR标记. 中国农业科学, 2001,34:592-596.
doi: 10.3321/j.issn:0578-1752.2001.06.003
Tang J H, Liu Z H, Chen W C, Hu Y M, Ji H Q, Ji L Y . The SSR markers of the main restorer genes for CMS-C cytoplasmic male sterility in maize. Sci Agric Sin, 2001,34:592-596 (in Chinese with English abstract).
doi: 10.3321/j.issn:0578-1752.2001.06.003
[17] Kohls S, Stamp P, Knaak C, Messmer R . QTL involved in the partial restoration of male fertility of C-type cytoplasmic male sterility in maize. Theor Appl Genet, 2011,123:327-338.
doi: 10.1007/s00122-011-1586-8 pmid: 21479555
[18] Lee S L J, Earle E D, Gracen V E . The cytology of pollen abortion in s cytoplasmic male-sterile corn anthers. Am J Bot, 1980,67:237-245.
doi: 10.1002/j.1537-2197.1979.tb06269.x
[19] Colhoun C W, Steer M W . Microsporogenesis and the mechanism of cytoplasmic male sterility in maize. Ann Bot, 1981,48:417-424.
doi: 10.1093/oxfordjournals.aob.a086145
[20] Tatum L A . The southern corn leaf blight epidemic. Science, 1971,171:1113-1116.
doi: 10.1126/science.171.3976.1113 pmid: 17777595
[21] Weider C, Stamp P, Christov N, Hüsken A, Foueillassar X, Camp K, Munsch M . Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci, 2009,49:77-84.
doi: 10.2135/cropsci2007.12.0694
[22] Duvick D N . Cytoplasmic pollen sterility in corn. Adv Genet, 1965,13:1-56.
doi: 10.1016/S0065-2660(08)60046-2
[23] Porebski S, Bailey L G, Baum B R . Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997,15:8-15.
doi: 10.1007/BF02772108
[24] Qu J, Liu J . A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data. BMC Res Notes, 2013,6:1-10.
doi: 10.1186/1756-0500-6-1
[25] Kosambi D D . The estimation of map distances from recombination values. Ann Hum Genet, 1944,12:172-175.
doi: 10.1111/j.1469-1809.1943.tb02321.x
[26] 赵卓凡, 黄玲, 刘永明, 张鹏, 魏桂, 曹墨菊 . 玉米CMS-C同质异核不育系育性恢复的遗传研究. 遗传, 2018,40:402-414.
Zhao Z F, Huang L, Liu Y M, Zhang P, Wei G, Cao M J . Genetics of fertility restoration in the isocytoplasm allonuclear C-group of cytoplasmic male sterility in maize. Hereditas(Beijing), 2018,40:402-414 (in Chinese with English abstract).
[27] Ren R, Nagel B A, Kumpatla S P, Zheng P Z, Cutter G L, Greene T W, Thompson S A . Maize cytoplasmic maize sterility (CMS) C-type restorer Rf4 gene,molecular markers and their use.US2012090047 . 2012 -04-12.
[28] Nan G L, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers B C, Walbot V . MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017,144:163-172.
doi: 10.1242/dev.140673 pmid: 27913638
[29] Komori T, Ohta S, Murai N Y, Kuraya Y, Suzuki S, Hiei Y . Map-based cloning of a fertility restorer gene, Rf-1, in rice(Oryza sativa L.). Plant J, 2004,37:315-325.
[30] Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y G . Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006,18:676-687.
doi: 10.1105/tpc.105.038240 pmid: 16489123
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!