欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (3): 335-343.doi: 10.3724/SP.J.1006.2019.82035

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力

张平1,姜一梅1,曹鹏辉1,张福鳞1,伍洪铭1,蔡梦颖1,刘世家1,田云录1,江玲1,*(),万建民1,2   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室 / 农业部长江中下游粳稻生物学与遗传育种重点实验室 / 江苏省植物基因工程技术研究中心, 江苏南京 210095
    2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081
  • 收稿日期:2018-07-06 接受日期:2018-12-24 出版日期:2019-03-12 网络出版日期:2019-01-03
  • 通讯作者: 江玲
  • 基金资助:
    本研究由国家转基因生物新品种培育重大专项(2016ZX08001006);江苏省重点研发项目(BE2018388);江苏省重点研发项目(BE2017368);江苏省现代作物生产协同创新中心项目资助

Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability

Ping ZHANG1,Yi-Mei JIANG1,Peng-Hui CAO1,Fu-Lin ZHANG1,Hong-Ming WU1,Meng-Ying CAI1,Shi-Jia LIU1,Yun-Lu TIAN1,Ling JIANG1,*(),Jian-Min WAN1,2   

  1. 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture / Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2018-07-06 Accepted:2018-12-24 Published:2019-03-12 Published online:2019-01-03
  • Contact: Ling JIANG
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops(2016ZX08001006);the Key Science and Technology Project of Jiangsu Province(BE2018388);the Key Science and Technology Project of Jiangsu Province(BE2017368);Jiangsu Collaborative Innovation Center for Modern Crop Production

摘要:

利用置换系SL36作为qSS-9位点上Kasalath等位基因的供体亲本, 各方面农艺性状较好的宁粳4号作为轮回亲本, 通过回交和自交, 并使用4个与qSS-9紧密连锁的分子标记Y-10、Y-11、Y-14、Y-13进行基因型的检测筛选, 对宁粳4号进行耐贮性的遗传改良, 获得了既耐贮藏、大多农艺性状又接近于宁粳4号的较为稳定的优良新品系, 克服了宁粳4号耐贮藏性差的弱点。获得的新品系种子在人工老化和自然老化条件下均表现出发芽率明显提高、丙二醛含量显著降低、TTC染色效果更明显, 表明转入耐储藏主效QTL Qss-9 Kas的宁粳4号新品系耐贮性显著提高。

关键词: 水稻, 置换系, 分子标记辅助选择, 耐贮性, 遗传改良

Abstract:

In this paper, the chromosome segment substitution line SL36 was used as the donor parent with the Kasalath allele at the qSS-9 locus. Ningjing 4, a commercial cultivar with ideal agronomic traits, was used as a recurrent parent, through continuous self-pollination and backcrossing for four consecutive years. Four molecular markers Y-10, Y-11, Y-14, Y-13 closely linked to qSS-9 were used to screen genotypes, and molecular marker-assisted selection (MAS) was used for seed storage ability breeding for Ningjing 4. Through genetic improvement, we obtained inheritable lines with high seed storage ability. Most agronomic traits of the lines were nearly the same as those of Ningjing 4. These lines showed significantly higher germination rate, lower malondialdehyde content and more obvious TTC staining effects under artificial aging and natural aging conditions compared with Ningjing 4, indicating that the new lines with qSS-9 Kas have high seed storage ability.

Key words: rice, chromosome segment substitution line, molecular marker-assisted selection, seed storage ability, genetic improvement

图1

染色体片段置换系SL36的基因型示意图(A)和回交育种流程图(B)"

表1

本文中qSS-9的筛选标记"

标记
Marker
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
Y-10 ACCTCAAGTTTTCCTATTAGT TAGAGTGACCTGCTAATGAG
Y-11 ACGATTAGTTCAGTCCTTACAC AACGGCTCAACGATCAGTAC
Y-14 AAAAAGGATGGGAAACTGACC TTTGAACTCAGTACCTTGGGG
Y-13 AAAAAGGATGGGAAACTGACC TACAAATAATCCCGATGCCG

图2

亲本及F1种子在自然环境下贮藏18个月后的种子发芽率和TTC法测定的种子生活力 A: 亲本及F1种子发芽率测定; B、C: 亲本及F1发芽表现和TTC法种子生活力表现, 从左到右依次是SL36、宁粳4号和F1。**表示与宁粳4号的发芽率相比, 在0.01水平上存在极显著差异。"

图3

各亲本和BC5F2在与qSS-9紧密连锁的分子标记Y-10、Y-11、Y-14、Y-13下的基因型鉴定 A: 利用与qSS-9紧密连锁的分子标记Y-10、Y-11、Y-14和Y-13对各亲本的基因型进行鉴定; 其中, 1: DNA marker; 泳道2~5、6~9、10~13和14~17分别代表各品系在Y-10、Y-11、Y-14和Y-13的基因型; 泳道2、6、10和14为Nipponbare; 泳道3、7、11和15为宁粳4号; 泳道4、8、12和16为置换系SL36; 泳道5、9、13和17为Kasalath。B: 利用与qSS-9紧密连锁的分子标记Y-10、Y-11、Y-14和Y-13对宁粳4号、SL36及BC2F1间的基因型进行鉴定: 其中1: DNA marker; 泳道2~6分别代表宁粳4号、SL36及BC2F1在Y-10下的基因型; 7~11分别代表宁粳4号、SL36及BC5F2在Y-11下的基因型; 12~16分别代表宁粳4号、SL36及BC2F1在Y-14下的基因型; 17~21分别代表宁粳4号、SL36及BC2F1在Y-13下的基因型。"

图4

亲本和后代种子在不同老化处理下的发芽率和丙二醛的含量 A: 宁粳4号、SL36、BC3F2 (Y6647)在自然老化一年MDA含量; B: 宁粳4号、SL36、BC3F2在自然老化一年和两年的发芽率; C: 亲本和BC5F1种子在人工老化处理35 d后的发芽率; D: 宁粳4号、Y3059-1-7、Y3059-1-8、Y3059-1-9的发芽率; E~H: 老化处理30 d后的发芽情况。E、F、G、H分别代表宁粳4号、Y3059-1-7、Y3059-1-8、Y3059-1-9。*表示在P = 0.05水平上差异显著; **表示在P = 0.01水平上差异极显著。"

图5

宁粳4号和Y3059的TTC试验、直链淀粉含量和株型的比较 A: 老化处理30 d后宁粳4号和Y3059的TTC染色情况, 从左到右分别代表宁粳4号、Y3059-1-7、Y3059-1-8、Y3059-1-9; B: Y3059及宁粳4号种子中TTCH的含量; C: 宁粳4号和Y3059老化处理前后表观淀粉含量的变化; D: 抽穗时期宁粳4号(左)和BC5F2 (右)株型; E: 抽穗35 d后宁粳4号(左)和BC5F2 (右)株型。*表示在P = 0.05水平上差异显著; **表示在P = 0.01水平上差异极显著。"

表2

宁粳4号和Y3059农艺性状的比较"

抽穗期
HD (d)
株高
PH (cm)
分蘖数
NT
结实率
SSR (%)
千粒重
TGW (g)
单株产量
YPP (g)
宁粳4号Ningjing 4 87 ± 3 95 ± 4 11 ± 2 80.74 ± 0.02 25.50 ± 0.20 23 ± 0.18
BC5F2 (Y3059) 85 ± 3 107.5 ± 2.2** 13 ± 3* 83.08 ± 0.06 25.65 ± 0.90 22 ± 0.20
[1] Yamauchi M, Winn T . Rice seed vigor and seedling establishment in anaerobic soil. Crop Sci, 1996,36:680-686.
doi: 10.2135/cropsci1996.0011183X003600030027x
[2] 沈圣泉, 庄杰云, 王淑珍, 杨国花, 夏英武 . 水稻种子耐贮藏性QTL主效应和上位性效应分析. 分子植物育种, 2005,3:323-328.
doi: 10.3969/j.issn.1672-416X.2005.03.004
Shen S Q, Zhuang J Y, Wang S Z, Yang G H, Xia Y W . Analysis of QTLs with main and epistatic effects of the seed storability in rice. Mol Plant Breed, 2005,3:323-328 (in Chinese with English abstract).
doi: 10.3969/j.issn.1672-416X.2005.03.004
[3] Miura K, Lin S Y, Yano M, Nagamine T . Mapping quantitative trait loci controlling seed longevity in rice ( Oryza sativa L.). Theor Appl Genet, 2002,104:981-986.
pmid: 11912234
[4] 任淦, 彭敏, 唐为江, 徐才国, 邢永忠 . 水稻种子衰老相关基因定位. 作物学报, 2005,31:183-187.
Ren G, Peng M, Tang W J, Xu C G, Xing Y Z . QTL associated with seed aging in rice. Acta Agron Sin, 2005,31:183-187 (in Chinese with English abstract).
[5] Xue Y, Zhang S Q, Yao Q H, Peng R H, Xiong A S, Li X, Zhu W M, Zhu Y Y, Zha D S . Identification of quantitative trait loci for seed storability in rice ( Oryza sativa L.). Euphytica, 2008,164:739-744.
doi: 10.1007/s10681-008-9696-3
[6] Li L F, Lin Q Y, Liu S J, Liu X, Wang W Y, Ngo T H, Liu F, Zhao Z G, Jiang Ling, Wan, J M . Identification of quantitative trait loci for seed storability in rice ( Oryza sativa L.). Plant Breed, 2012,131:739-743.
doi: 10.1007/s10681-008-9696-3
[7] Lin Q Y, Jiang Y M, Sun A L, Cao P H, Li L F, Liu X, Tian Y L, He J, Liu S J, Chen L M, Jiang L . Fine mapping of qSS-9, a major and stable quantitative trait locus, for seed storability in rice( Oryza sativa L.). Plant Breed, 2015,134:293-299.
doi: 10.1111/pbr.12264
[8] 王学明, 吴爱国 . 中熟中粳宁粳4号种植表现及高产栽培技术. 耕作与栽培, 2010, ( 5):58.
doi: 10.3969/j.issn.1008-2239.2010.05.032
Wang X M, Wu A G , Planting performance and high-yielding cultural techniques of medium-maturity Ningjing 4. Till Cultiv, 2010, ( 5):58 (in Chinese).
doi: 10.3969/j.issn.1008-2239.2010.05.032
[9] 林秋云 . 水稻种子耐贮性相关基因的定位. 南京农业大学博士学位论文, 江苏南京, 2012.
Lin Q Y . Gene Location for Seed Storability in Rice (Oryza sativa L.). PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2012 (in Chinese with English abstract).
[10] Zeng D L, Guo L B, Xu Y B, Yasukumi K, Zhu L H, Qian Q . QTL analysis of seed storability in rice. Plant Breed, 2006,125:57-60.
doi: 10.1111/j.1439-0523.2006.01169.x
[11] Lopez D E L, David N M, Victor M H, Toorop P E, Iannetta P P M . A spectrophotometric assay for robust viability testing of seed batches using 2,3,5-triphenyl tetrazolium chloride: using Hordeum vulgare L. as a model. Front Plant Sci, 2017,8:747.
doi: 10.3389/fpls.2017.00747 pmid: 5433298
[12] Zhao P F, Zhu Y H, Wang W . Evaluation and improvement of spectrophotometric assays of TTC reduction: maize ( Zea mays) embryo as an example. Acta Physiol Plant, 2010,32:815-819.
doi: 10.1007/s11738-009-0457-2
[13] Sasaki K, Fukuta Y, Sato T . Mapping of quantitative trait loci controlling seed longevity of rice ( Oryza sativa L.) after various periods of seed storage. Plant Breed, 2005,124:361-366.
doi: 10.1111/j.1439-0523.2005.01109.x
[14] Ngo T H, Lin Q Y, Liu L L, Liu X, Liu S J, Wang W Y, Li L F, He N Q, Liu Z, Jiang L, Wan J M . Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions. Euphytica, 2015,203:673-681.
doi: 10.1007/s10681-014-1304-0
[15] Rajjou L, Lovigny Y ,Groot S P C, Belghaz M, Job C, Job D. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol, 2008,148:620-641.
doi: 10.1104/pp.108.123141 pmid: 18599647
[16] 许惠滨, 魏毅东, 连玲, 朱永生, 谢华安, 王宗华, 张建福 . 水稻种子人工老化与自然老化的分析比较. 分子植物育种, 2013,11:552-556.
doi: 10.3969/mpb.011.000552
Xu H B, Wei Y D, Lian L, Zhu Y S, Xie H A, Wang Z H, Zhang J F . Comparative analysis of artificial aging and natural aging with rice seeds. Mol Plant Breed, 2013,11:552-556 (in Chinese with English abstract).
doi: 10.3969/mpb.011.000552
[17] Sharp R N, Timme L K . Effects of storage time, storage- temperature, and packaging method on shelf life of brown rice. Cereal Chem, 1986,63:247-251.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!