欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (4): 568-577.doi: 10.3724/SP.J.1006.2019.83052

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米Suwan种质改良过程中的关键基因组区段发掘

李秀诗,吴迅,吴文强,刘鹏飞,郭向阳,王安贵,祝云芳,陈泽辉()   

  1. 贵州省农业科学院旱粮研究所, 贵州贵阳 550006
  • 收稿日期:2018-06-26 接受日期:2018-12-24 出版日期:2019-04-12 网络出版日期:2019-01-04
  • 通讯作者: 陈泽辉
  • 基金资助:
    本研究由国家“七大作物育种”专项(2016YFD0101206-4)(2016YFD0101206);黔农科院自主创新科研专项字(2014)006(Special Character of Independent Innovation of Guizhou Academy of Agriculture [2014]006);国家自然科学基金项目(31760387);黔科合支撑([2016]2605, [2016]2549, [2017]2507, [2018]2296);黔科合基础资助([2017]1413)

Excavation of main candidate genome regions in Suwan germplasm improvement process of maize

LI Xiu-Shi,WU Xun,WU Wen-Qiang,LIU Peng-Fei,GUO Xiang-Yang,WANG An-Gui,ZHU Yun-Fang,CHEN Ze-Hui()   

  1. Upland Crops Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2018-06-26 Accepted:2018-12-24 Published:2019-04-12 Published online:2019-01-04
  • Contact: Ze-Hui CHEN
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0101206);Innovation Program of QAAS(Special Character of Independent Innovation of Guizhou Academy of Agriculture [2014]006);National Natural Science Foundation of China(31760387);Science and Technology Support Project of Guizhou Province (Qiankehe support([2016]2605, [2016]2549, [2017]2507, [2018]2296);Science and Technology Project of Guizhou Province (Qiankehe Foundation)([2017]1413)

摘要:

玉米Suwan种质抗性好、适应性强、籽粒品质优, 在现代育种尤其是南方玉米育种中具有不可替代的作用。明确Suwan种质优良特性在改良过程中的遗传机制对我国南方玉米生态区的玉米生产具有重要意义。本研究以Suwan 1 (Suwan 1C10)及其衍生群体(苏兰1号C0)不同改良世代为材料, 利用包含5.6万个SNP标记的MaizeSNP50芯片对供试群体进行基因型鉴定。遗传分析发现: Suwan 1群体不同改良世代间的基因组差异片段较少, 仅出现5个, 其中4个出现在第11轮改良世代(Suwan 1 C11), 1个出现在第15轮改良世代(Suwan 1 C15); 苏兰1号不同改良世代间的基因组差异片段相对较多, 共有18个, 其中8个在不同改良世代间稳定遗传; Suwan种质改良形成苏兰1号群体的过程中, 共获得43个Lancaster特异性遗传片段, 其中35个在苏兰1号不同改良世代间稳定遗传。全基因组关联分析共鉴定出16个与穗行数显著关联的QTN, 分别位于第2、第3、第5、第6、第7、第8、第9染色体上, 其中SYN25713和SYN36577位于苏兰1号群体的Lancaster特异性遗传片段内; 共检测到13个控制穗长相关的QTN, 分别位于第1、第2、第5、第7、第8、第9染色体上, 其中PZE-105143697位于苏兰1号群体的Lancaster特异性遗传片段内。该结果为后续全基因组关联研究和分子标记辅助选择等提供了重要的理论依据。

关键词: 玉米, 群体改良, 基因组特征, 全基因组关联分析, 遗传位点

Abstract:

Suwan germplasm with good resistance, strong adaptability and excellent grain quality has played an irreplaceable role in modern breeding, especially in the southern of China. It is important to clarify the genetic mechanism of Suwan germplasm. In this study, modified generations of Suwan 1 (Suwan 1 C10) and its derived population (Suwan-Lancaster 1 C0) were used to be genotyped by using MaizeSNP50 chips containing about 56,000 SNP markers. There was a smaller genome differences among different improved generations for Suwan 1 population, with only five different inherited fragments identified, among which four appeared only in the 11th improved generation (Suwan 1 C11), one appeared only in the 15th improved generation (Suwan 1 C15). For Suwan-Lancaster1 population, among 18 different genetic fragments eight were stably inherited in different improved generations. A total of 43 specific genetic segments of Lancaster germplasm were obtained, among them 35 were stably inherited in different improved generations. Genome-wide association studies (GWAS) showed that 16 QTNs significantly associated with kernel row number were located on chromosomes 2, 3, 5, 6, 7, 8, and 9, respectively, among them SYN25713 and SYN36577 were located in the Lancaster specific genetic fragment of the Suwan-Lancaster 1 population. A total of 13 QTNs related to ear length were located on chromosomes 1, 2, 5, 7, 8, and 9, respectively, among them PZE-105143697 was located in the Lancaster specific genetic fragment. These results provide an important theoretical basis for the subsequent genome-wide association study and molecular marker assisted selection.

Key words: maize, population improvement, genome characteristics, genome-wide association study, genetic loci

表1

供试材料系谱和类群"

序号
No.
材料
Accession
系谱
Pedigree
类群
Group
1 Suwan 1 (Suwan 1 C10) Suwan 1 C9 Suwan
2 Suwan 1 C11 Suwan 1 C10 Suwan
3 Suwan 1 C12 Suwan 1 C11 Suwan
4 Suwan 1 C13 Suwan 1 C12 Suwan
5 Suwan 1 C15 Suwan 1 C14 Suwan
6 苏兰1号C0 SL1C0 Suwan, Lancaster及78599选系
Synthetic populations of Suwan, Lancaster and 78599 selected lines
Suwan-Lancaster
7 苏兰1号C1 SL1C1 苏兰1号C0 SL1C0 Suwan-Lancaster
8 苏兰1号C2 SL1C2 苏兰1号C1 SL1C1 Suwan-Lancaster
9 苏兰1号C3 SL1C3 苏兰1号C2 SL1C2 Suwan-Lancaster

表2

9个供试群体穗长和穗行数"

材料
Accession
穗长 Ear length 穗行数 Kernel row number
贵阳
Guiyang
大方
Dafang
罗平
Luoping
平均值
Mean
贵阳
Guiyang
大方
Dafang
罗平
Luoping
平均值
Mean
苏兰1号C0 SL1C0 17.67 18.77 17.40 17.94 15.47 14.53 14.67 14.89
苏兰1号C1 SL1C1 18.13 19.33 17.17 18.21 15.33 14.73 14.27 14.78
苏兰1号C2 SL1C2 17.87 18.97 18.20 18.34 14.27 14.27 14.47 14.33
苏兰1号C3 SL1C3 18.27 19.57 17.73 18.52 15.00 15.53 15.20 15.24
Suwan 1 (Suwan 1 C10) 17.47 18.33 16.43 17.41 15.00 14.93 14.00 14.64
Suwan 1 C11 17.67 18.23 17.03 17.64 15.40 14.93 14.13 14.82
Suwan 1 C12 16.87 17.97 16.33 17.06 15.13 15.87 14.60 15.20
Suwan 1 C13 16.53 18.17 16.20 16.97 15.40 14.93 14.20 14.84
Suwan 1 C15 17.60 18.53 17.03 17.72 14.60 14.60 14.53 14.58
平均值Mean 17.56 18.65 17.06 17.76 15.07 14.93 14.45 14.81
标准差Standard deviation 1.09 0.73 0.84 1.11 0.67 0.57 0.65 0.68
变异系数Coefficient of variation (%) 6.21 3.91 4.92 6.25 4.45 3.82 4.50 4.59

图1

Suwan 1群体不同改良世代间的基因组特征 特异性SNP标记在染色体上的物理位置见附表1。"

表1

1 附Suwan 1群体不同改良世代的特异性标记"

SNP 染色体
Chr.
物理位置
Position
SNP 染色体
Chr.
物理位置
Position
SYN450 1 35968064 PZE-106016986 6 32497838
PZE-103104159 3 164159285 PZE-106016987 6 32498979
PZE-106016953 6 32495316 PZE-106017115 6 32905813
PZE-106016962 6 32495710 PZE-106017122 6 32908494
PZE-106016971 6 32496071 PZE-106099248 6 152896893
PZA00540.3 6 32496071 PZE-108113902 8 163858777

图2

苏兰1号群体不同改良世代间的基因组特征 特异性SNP标记在染色体上的物理位置见附表2。"

表2

2 苏兰1号群体不同改良世代的特异性标记"

SNP 染色体
Chr.
物理位置
Position
SNP 染色体
Chr.
物理位置
Position
PZE-101205609 1 253344590 PZE-102156731 2 203902578
PZE-101205965 1 253895960 SYN15645 3 182660027
SYN6838 1 297376850 PZE-105016506 4 7204051
PZE-103008521 2 4666469 PZE-106033525 5 76988770
PZE-102060229 2 38551101 SYN25006 6 8192709
PZE-102060230 2 39031517 PZE-107126153 7 163083361
PZE-102061400 2 39748797 PZE-109019803 7 20222259
SYN26925 2 200353907 PZE-109051268 9 85880947
SYN26929 2 200359094 PZE-109051619 9 86414796
SYN10568 2 200723525 PZE-109052137 9 86974491
SYN35589 2 201246108

图3

Suwan 1与苏兰1号不同改良世代间的基因组特征 特异性SNP标记在染色体上的物理位置见附表3。"

表3

3 Suwan 1与苏兰1号不同改良世代间的特异性标记"

SNP 染色体
Chr.
物理位置
Position
SNP 染色体
Chr.
物理位置
Position
SYN11491 1 3683507 PZE-104127854 4 212788677
PZE-101054452 1 38617583 PZE-104127855 4 212788991
PZE-101178005 1 222370910 PZE-104152999 4 243521349
PZE-101192090 1 237838603 SYN28825 5 7319620
PZE-101192133 1 237900682 PZE-105051178 5 43960922
PZE-101192647 1 238680213 PZE-105051179 5 43961044
PZE-101195574 1 242361972 PZE-105051200 5 43966297
PZE-101195592 1 242398910 PZE-105099516 5 146942464
PZE-101196147 1 243255282 PZE-105101687 5 152095801
PZE-101196704 1 244083020 PZE-105102557 5 154315332
PZE-101196940 1 244512792 PZE-105144984 5 197943057
PZE-101197050 1 244678601 PZB02424.1 5 199531408
SYN12881 1 245242156 SYN30468 5 199531778
PZE-101197856 1 245308899 PZA00540.3 6 32496071
SYN15061 1 261370341 PZE-106016971 6 32496071
PZE-102060229 2 38551101 PZE-106017115 6 32905813
PZE-102060230 2 39031517 PZE-106017122 6 32908494
SYN26925 2 200353907 SYN25006 7 8192709
SYN26929 2 200359094 PZE-107018281 7 15776884
SYN35589 2 201246108 PZE-107126153 7 163083361
PZE-103025362 3 17738644 SYN34213 8 5090046
PZE-103056619 3 68433447 PZE-108010963 8 11645850
PZE-103068285 3 108233400 PUT-163a-78089347-4225 8 169951365
PZE-103076844 3 123683053 PUT-163a-78089347-4224 8 169951478
PZE-103083872 3 135004208 PZE-109008703 9 9247324
SYN34685 4 202660380 SYN36362 9 9247324
PZE-104126691 4 210495187 PZE-109051619 9 86414796
PZE-104127248 4 211708774 PZE-109101971 9 141650742
PZE-104127853 4 212785374 PZE-110080467 10 134211006

表3

穗行数显著关联的SNP位点"

SNP 染色体
Chr.
物理位置
Position
P
P-value (×10-4)
最小等位基因频率
Minimum allele frequency
PZE-102049428 2 27586143 0.83 0.22
SYN29936 3 214728752 0.79 0.53
SYN25713 4 218657640 0.50 0.39
PZE-104012465 4 10671690 0.95 0.39
PZE-105068275 5 70167652 0.38 0.50
SYN35408 5 64502995 0.64 0.53
ZM013904-0312 5 64757602 0.64 0.53
PZE-105060180 5 58448124 0.80 0.44
PZE-106105143 6 155807238 0.29 0.42
PUT-163a-60355888-2779 6 30864359 0.32 0.61
PUT-163a-60355888-2773 6 30864423 0.32 0.61
SYN36577 7 9216854 0.53 0.67
SYN36527 8 166695438 0.72 0.17
SYN36532 8 166695690 0.72 0.83
PZE-108065598 8 115805296 0.89 0.33
PZE-109004718 9 5289730 0.54 0.31

图4

穗行数相关QTNA和B分别代表曼哈顿图和QQ图。A and B represent Manhattan plot and QQ plot, respectively."

表4

穗长显著关联的SNP位点"

SNP 染色体
Chr.
物理位置
Position
P
P-value (×10-4)
最小等位基因频率
Minimum allele frequency
SYN28790 1 198085193 3.55 0.56
PZE-102089207 2 89322082 3.55 0.83
PZE-102089216 2 89350485 7.42 0.17
PZE-102094273 2 103594813 7.42 0.28
PZE-103146876 3 199472604 5.85 0.64
PZE-105143697 5 196993540 6.06 0.22
SYN2938 5 212502760 2.47 0.44
PZE-105181391 5 215066204 8.77 0.22
SYN19052 7 125475003 6.64 0.78
SYN10053 8 1816317 7.98 0.39
PZA-000908002 8 99959553 2.84 0.44
PZE-108076469 8 130589109 3.55 0.83
PZE-109008801 9 9401106 7.42 0.44

图5

穗长相关QTNA和B分别代表曼哈顿图和QQ图。A and B represent Manhattan plot and QQ plot, respectively."

[1] 陈泽辉 . 贵州玉米育种. 贵阳: 贵州科技出版社, 2011. pp 100-130.
Chen Z H. Maize Breeding in Guizhou. Guiyang: Guizhou Science and Technology Publishing House, 2011. pp 100-130(in Chinese).
[2] Vasal S K, Srinivasan G, Crossa J, Beck D L . Heterosis and combining ability of CIMMYT's subtropical and temperate early- maturity maize germplasm. Crop Sci, 1992,32:884-890.
doi: 10.2135/cropsci1992.0011183X003200040010x
[3] 陈泽辉, 祝云芳, 王安贵, 郭向阳, 邬成 . 玉米Tuxpeno和Suwan种质的改良研究. 贵州农业科学, 2010,38(2):1-4.
Chen Z H, Zhu Y F, Wang A G, Guo X Y, Wu C . Improvement of Tuxpeno and Suwan germplasm in maize. Guizhou Agric Sci, 2010,38(2):1-4 (in Chinese with English abstract).
[4] 陈泽辉, 高翔, 祝云芳 . Suwan与我国四大玉米种质的配合力和杂种优势分析. 玉米科学, 2005,13(1):5-9.
Chen Z H, Gao X, Zhu Y F . Study on the combining ability and heterosis between Suwan and four major maize germplasm of China. J Maize Sci, 2005,13(1):5-9 (in Chinese with English abstract).
[5] 胡学爱 . 玉米新品种——雅玉2号. 农业科技通讯, 1993, ( 8):39.
Hu X A . New maize cultivars—Yayu No.2. Bull Agric Sci Technol, 1993, ( 8):39 (in Chinese).
[6] 柏光晓, 任洪 . 适宜西南山区的高产优质多抗玉米杂交种贵单8号选育研究. 玉米科学, 2007,15(增刊1):27-29.
Bai G X, Ren H . Breeding study of high yield, good quality and high resistance corn hybrid vareity Guidan No.8. J Maize Sci, 2007,15(suppl 1):27-29 (in Chinese with English abstract).
[7] 祝云芳, 陈泽辉, 任洪, 王安贵, 郭向阳 . 国审玉米新品种金玉506的选育及应用. 农业科技通讯, 2014, ( 9):176-178.
Zhu Y F, Chen Z H, Ren H, Wang A G, Guo X Y . Breeding and application of a new country trial maize cultivars Jinyu 506. Bull Agric Sci Technol, 2014, ( 9):176-178 (in Chinese).
[8] 黄吉美 . 会单4号制种技术. 作物杂志, 1996, ( 1):12.
Huang J M . Seed production technology of Huidan No. 4. Crops, 1996, ( 1):12 (in Chinese).
[9] 兰进好, 李新海, 高树仁, 张宝石, 张世煌 . 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005,31:1253-1259.
Lan J H, Li X H, Gao S R, Zhang B S, Zhang S H . QTL analysis of yield components in maize under different environments. Acta Agron Sin, 2005,31:1253-1259 (in Chinese with English abstract).
[10] 吴迅 . 玉米重要自交系的遗传特征鉴定与株型性状关联分析. 四川农业大学博士学位论文, 四川成都, 2013.
Wu X . Genetic Characterization of Important Maize Inbred Lines and Association Mapping of Plant Architecture-related Traits. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2013 (in Chinese with English abstract).
[11] Yang C, Liu J, Rong T Z . Detection of quantitative trait loci for ear row number in F2 populations of maize. Genet Mol Res Gmr, 2015, 14:14229.
[12] 杨文鹏, 关琦, 杨留启, 王伟, 张文龙, 祝云芳, 潘敏娜, 沈建华, 赵致 . 贵州70份玉米自交系的SSR标记遗传多样性及其杂种优势群分析. 植物遗传资源学报, 2011,12:241-248.
Yang W P, Guan Q, Yang L Q, Wang W, Zhang W L, Zhu Y F, Pan M N, Shen J H, Zhao Z . Genetic diversity and heterotic group of 70 maize inbred lines in Guizhou by SSR marker. J Plant Genet Resour, 2011,12:241-248 (in Chinese with English abstract).
[13] 闫飞燕, 范继征, 周锦国, 程伟东, 石达金, 钟昌松, 覃兰秋, 孔祥林 . 12个不同玉米热带种质比例群体的产量配合力效应及杂种优势分析. 西南农业学报, 2011,24:471-477.
Yan F Y, Fan J Z, Zhou J G, Cheng W D, Shi D J, Zhong C S, Qin L Q, Kong X L . Combining ability and heterosis of 12 different kinds of tropic maize populations. Southwest China J Agric Sci, 2011,24:471-477 (in Chinese with English abstract).
[14] 番兴明, 谭静, 杨峻芸, 刘峰, 黄必华, 黄云霄 . 外来热带、亚热带玉米自交系与温带玉米自交系产量配合力分析及其遗传关系的研究. 中国农业科学, 2002,35:743-749.
Fan X M, Tan J, Yang J Y, Liu F, Huang B H, Huang Y X . Study on yield combining ability and genetic relationship between exotic tropical, subtropical maize inbreds and domestic temperate inbreds. Sci Agric Sin, 2002,35:743-749 (in Chinese with English abstract).
[15] Zhang X, Zhang H, Li L J, Lan H, Ren Z Y, Liu D, Wu L, Liu H L, Jaqueth J, Li B L, Pan G T, Gao S B . Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics, 2016,17:697.
doi: 10.1186/s12864-016-3041-3 pmid: 5007717
[16] 陈泽辉, 祝云芳, 王安贵, 郭向阳, 赵丽, 胡兴 . 玉米Tuxpeno-Reid和Suwan-Lancaster合成群体相互轮回选择效果及杂种优势研究. 玉米科学, 2013, ( 4):1-5.
Chen Z H, Zhu Y F, Wang A G, Guo X Y, Zhao L, Hu X . Two maize populations of Tuxpeno-Reid and Suwan-Lancaster by reciprocal recurrent selection and the heterosis. J Maize Sci, 2013, ( 4):1-5 (in Chinese with English abstract).
[17] 石云素 . 玉米种质资源描述规范和数据标准 . 中国农业出版社, 2006. p 62.
Shi Y S. Descriptors and Data Standard for Maize (Zea mays L.). Beijing: China Agriculture Press, 2006. p 62 (in Chinese).
[18] Publishing S. Base SAS 9. 2 Procedures Guide: Statistical Procedures. SAS Publishing, 2008.
[19] Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y . Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet, 2014,127:621-631.
doi: 10.1007/s00122-013-2246-y pmid: 24343198
[20] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 20320202020202020202020
[21] 陈泽辉 . 群体与数量遗传学. 贵阳: 贵州科技出版社, 2009. pp 28-53.
Chen Z H. Population and Quantitative Genetics. Guiyang: Guizhou Science and Technology Publishing House, 2009. pp 28-53(in Chinese).
雍洪军, 张芳军, 张德贵, 张晓聪, 李明顺, 潘光堂, 张世煌, 李新海, 荣廷昭 . 10个玉米群体改良杂交种吉单261的育种利用分析. 核农学报, 2014,28:765-771.
Yong H J, Zhang F J, Zhang D G, Zhang X C, Li M S, Pan G T, Zhang S H, Li X H, Rong Y Z . Analysis on breeding potential of ten populations to improve a Chinese maize hybrid ‘Jidan 261’. J Nucl Agric Sci, 2014,28:765-771 (in Chinese with English abstract).
[22] 李芦江, 陈文生, 杨克诚, 潘光堂, 荣廷昭 . 控制双亲混合选择对2个玉米窄基群体主要性状的改良效果. 中国农业科学, 2010,43:4775-4786.
Li L J, Chen W S, Yang K C, Pan G T, Rong T Z . Effects of biparental mass selection on two narrow-base maize populations. Sci Agric Sin, 2010,43:4775-4786 (in Chinese with English abstract).
[23] Lu M, Xie C X, Li X H, Hao Z F, Li M S, Weng J F, Zhang D G, Bai L, Zhang S H . Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breed, 2011,28:143-152.
doi: 10.1007/s11032-010-9468-3
[24] Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S . Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006,149:121-131.
doi: 10.1007/s10681-005-9060-9
[25] 王辉, 梁前进, 胡小娇, 李坤, 黄长玲, 王琪, 何文昭, 王红武, 刘志芳 . 不同密度下玉米穗部性状的QTL分析. 作物学报, 2016,42:1592-1600.
Wang H, Liang Q J, Hu X J, Li K, Huang C L, Wang Q, He W Z, Wang H W, Liu Z F . QTL mapping for ear architectural traits under three plant densities in maize. Acta Agron Sin, 2016,42:1592-1600 (in Chinese with English abstract).
[26] Zhou G, Zhu Q, Yang G, Huang J, Cheng S, Yue B, Zhang Z . qEL7.2 is a pleiotropic QTL for kernel number per row, ear length and ear weight in maize( Zea mays L.). Euphytica, 2015,203:429-436.
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!