作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1905-1911.doi: 10.3724/SP.J.1006.2019.91016
• 研究简报 • 上一篇
司文洁1,吴林楠1,郭利建1,周梦蝶1,刘香利1,2,马猛1,2,*(),赵惠贤1,2,*()
Wen-Jie SI1,Lin-Nan WU1,Li-Jian GUO1,Meng-Die ZHOU1,Xiang-Li LIU1,2,Meng MA1,2,*(),Hui-Xian ZHAO1,2,*()
摘要:
为了开发小麦粒重相关基因TaCYP78A5 (Triticum aestivum Cytochrome P450 78A5)的功能标记, 挖掘与千粒重性状相关的优异等位变异, 本研究通过对30份不同品种小麦TaCYP78A5启动子区测序及比对鉴定, 并根据SNP位点差异开发TaCYP78A5-2A启动子区功能标记CAPS-5Ap。结果表明, 在30份不同小麦品种中TaCYP78A5-2A启动子区域出现5个SNP位点差异, 可将30份不同品种小麦分为TaCYP78A5-2Ap-HapI和TaCYP78A5-2Ap-HapII两种单倍型; 以323份现代育成小麦品种验证发现, TaCYP78A5-2Ap-HapI的分布频率为17.96%, TaCYP78A5-2Ap-HapII的分布频率为82.04%, 表明CAPS-5Ap标记可用于小麦TaCYP78A5-2A启动子序列2种单倍型的鉴定。此外, 关联分析发现, CAPS-5Ap标记与粒重相关, 且TaCYP78A5-2Ap-HapII是提高千粒重的优异单倍型。研究结果为小麦分子标记辅助选择和性状改良提供理论依据。
[1] |
Xu F, Fang J, Ou S J, Gao S P, Zhang F X, Du L, Xiao Y H, Wang H R, Sun X H, Chu J F, Wang G D, Chu C C . Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell Environ, 2015,38:800-811.
doi: 10.1111/pce.2015.38.issue-4 |
[2] |
Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S, Zhang X Y . The wheat (T. aestivum) sucrose synthase 2 gene(TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genom, 2011,11:49-61.
doi: 10.1007/s10142-010-0188-x |
[3] |
Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y . Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2011,122:211-223.
doi: 10.1007/s00122-010-1437-z |
[4] |
Ma D Y, Yan J, He Z H, Wu L, Xia X C . Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed, 2012,29:43-52.
doi: 10.1007/s11032-010-9524-z |
[5] |
Andersen J R, Lubberstedt T . Functional markers in plants. Trends Plant Sci, 2003,8:554-560.
doi: 10.1016/j.tplants.2003.09.010 |
[6] | Gupta P K, Rustgi S . Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics, 2004,4:139-62. |
[7] |
Michaels S D, Amasino R M . A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J, 1998,14:381-385.
doi: 10.1046/j.1365-313X.1998.00123.x |
[8] | 束永俊, 李勇, 朱振雷, 朱延明 . 大豆CAPS标记快速开发方法的建立与优化. 东北农业大学学报, 2009,40:62-65. |
Shu Y J, Li Y, Zhu Z L, Zhu Y M . Establishment and optimization of the rapid method to develop soybean CAPS molecular markers. J Northeast Agric Univ, 2009,40:62-65 (in Chinese with English abstract). | |
[9] |
Zhang B, Xu W N, Liu X, Mao X G, Li A, Wang J Y, Chang X P, Zhang X Y, Jing R L . Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP-box genes governing yield-related traits in hexaploid wheat. Plant Physiol, 2017,174:1177-1191.
doi: 10.1104/pp.17.00113 |
[10] |
Adamski N M, Anastasiou E, Eriksson S, O’Neill C M, Lenhard M . Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Natl Acad Sci USA, 2009,106:20115-20120.
doi: 10.1073/pnas.0907024106 |
[11] |
Fang W J, Wang Z B, Cui R F, Li J, Li Y H . Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J, 2012,70:929-939.
doi: 10.1111/j.1365-313X.2012.04907.x |
[12] |
Nagasawa N, Hibara K I, Heppard E P, Vander Velden K A, Luck S, Beatty M, Nagato Y, Sakai H . GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice.. Plant J, 2013,75:592-605.
doi: 10.1111/tpj.12223 |
[13] |
Eriksson S, Stransfeld L, Adamski N M, Breuninger H, Lenhard M . KLUH/CYP78A5-dependent growth signaling coordinates floral organ growth in Arabidopsis. Curr Biol, 2010,20:527-532.
doi: 10.1016/j.cub.2010.01.039 |
[14] |
Yang W B, Gao M J, Yin X, Liu J Y, Xu Y H, Zeng L J, Li Q, Zhang S B, Wang J M, Zhang X M, He Z H . Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome P450. Mol Plant, 2013,6:1945-1960.
doi: 10.1093/mp/sst107 |
[15] |
Ma M, Zhao H X, Li Z J, Hu S W, Song W N, Liu X L . TaCYP78A5 regulates seed size in wheat(Triticum aestivum). J Exp Bot, 2016,67:1397-1410.
doi: 10.1093/jxb/erv542 |
[16] |
Ma M, Wang Q, Li Z J, Cheng H H, Li Z J, Liu X L, Song W N, Appels R, Zhao H X . Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat(Triticum aestivum L.), affects seed size. Plant J, 2015,83:312-325.
doi: 10.1111/tpj.12896 |
[17] | 陈之忍, 马猛, 申玉霞, 吴林楠, 刘香利, 赵惠贤 . TaCYP78A5基因过表达小麦的遗传和功能初步分析. 麦类作物学报, 2017,37:721-729. |
Chen Z R, Ma M, Shen Y X, Wu L N, Liu X L, Zhao H X . Geneticand functional analysis of transgenic wheat overexpressing TaCYP78A5 gene. J Triticeae Crops, 2017,37:721-729 (in Chinese with English abstract). | |
[18] | 吴林楠, 司文洁, 郭利建, 张亚婷, 赵惠贤, 刘香利, 马猛 . 小麦粒重相关基因TaCYP78A16的克隆和CAPS标记开发. 农业生物技术学报, 2018,26:1659-1669. |
Wu L N, Si W J, Guo L J, Zhang Y T, Zhao H X, Liu X L, Ma M . Cloning and CAPS marker development of seed weight-related gene TaCYP78A16 in wheat(Triticum aestivum). J Agric Biotechnol, 2018,26:1659-1669 (in Chinese with English abstract). | |
[19] |
Zhang Y J, Liu J D, Xia X C, He Z H . TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed, 2014,34:1097-1107.
doi: 10.1007/s11032-014-0102-7 |
[20] |
Guo Y, Sun J, Zhang G, Wang Y, Kong F, Zhao Y, Li S . Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1a in wheat. Field Crops Res, 2013,154:119-125.
doi: 10.1016/j.fcr.2013.07.012 |
[21] |
Sotelosilveira M, Cucinotta M, Chauvin A L, Montes R A C, Colombo L, Marschmartínez N, Folter S D . Cytochrome P450 CYP78A9 is involved in arabidopsis reproductive development. Plant Physiol, 2013,162:779-799.
doi: 10.1104/pp.113.218214 |
[22] |
相吉山, 穆培源, 桑伟, 聂迎彬, 徐红军, 庄丽, 崔凤娟, 韩新年, 邹波 . 小麦粒重基因TaCwi-A1功能标记CWI22、CWI21的验证及应用. 中国农业科学, 2014,47:2671-2709.
doi: 10.3864/j.issn.0578-1752.2014.13.019 |
Xiang J S, Mu P Y, Sang W, Nie Y B, Xu H J, Zhuang L, Cui F J, Han X N, Zou B . Validation and application of function markers CWI22 and CWI21 of TaCwi-A1 gene related to wheat kernel weight. Sci Agric Sin, 2014,47:2671-2709 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.13.019 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[7] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[8] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[9] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[10] | 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352. |
[11] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[14] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[15] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
|