欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1157-1165.doi: 10.3724/SP.J.1006.2020.92059

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5

陈日荣1,周延彪2,3,王黛君5,赵新辉3,唐晓丹3,许世冲4,唐倩莹3,符星学3,王凯3,刘选明1,*(),杨远柱1,2,3,4,*()   

  1. 1湖南大学生物学院/植物功能基因组学与发育调控湖南省重点实验室, 湖南长沙410082
    2袁隆平农业高科技股份有限公司/农业农村部南方水稻品种创制重点实验室, 湖南长沙410001
    3湖南亚华种业科学研究院, 湖南长沙 410119
    4华中农业大学植物科学技术学院, 湖北武汉 430070
    5湖南师范大学生命科学学院, 湖南长沙 410081
  • 收稿日期:2019-11-09 接受日期:2020-04-15 出版日期:2020-08-12 网络出版日期:2020-04-26
  • 通讯作者: 刘选明,杨远柱
  • 作者简介:E-mail: 641605686@qq.com。
  • 基金资助:
    国家自然科学基金项目(31901516);国家转基因生物新品种培育重大专项(2016ZX08001-004);湖南省自然科学青年基金项目(2019JJ50414)

CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice

CHEN Ri-Rong1,ZHOU Yan-Biao2,3,WANG Dai-Jun5,ZHAO Xin-Hui3,TANG Xiao-Dan3,XU Shi-Chong4,TANG Qian-Ying3,FU Xing-Xue3,WANG Kai3,LIU Xuan-Ming1,*(),YANG Yuan-Zhu1,2,3,4,*()   

  1. 1Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation/College of Biology, Hunan University, Changsha 410082, Hunan, China
    2Yuan Longping High-Tech Agriculture Co. Ltd./Key Laboratory of Rice Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Changsha 410001, Hunan, China
    3Yahua Seeds Science Academy of Hunan, Changsha 410119, Hunan, China
    4College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    5College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
  • Received:2019-11-09 Accepted:2020-04-15 Published:2020-08-12 Published online:2020-04-26
  • Contact: Xuan-Ming LIU,Yuan-Zhu YANG
  • Supported by:
    National Natural Science Foundation of China(31901516);National Major Project for Developing New GM Crops(2016ZX08001-004);Project of Hunan Natural Science Youth Foundation(2019JJ50414)

摘要:

tms5是生产上应用最广泛的温敏不育基因。为创制新型水稻温敏核不育系, 利用CRISPR/Cas9基因编辑技术将6个优异的粳稻和4个优异的籼稻的TMS5基因敲除, 获得了温敏核不育系。比较发现, 粳稻温敏不育系ZG75S、CYGS、YG0618S、ZG07S、T0361S、7679S的不育起点温度在28~32°C之间, 籼稻温敏核不育系2537S、6150S、6379S的不育起点温度在24~28°C之间, 而籼稻温敏核不育系1109S的不育起点温度低于23.5°C。说明不同遗传背景材料获得的tms5突变体的不育起点温度不一样, 通过TMS5的敲除可能获得不育起点温度较低的温敏核不育系。利用1109S与优质父本8048选配出优质高产杂交稻组合1109S/8048。大田试验表明, 1109S/8048比区试对照丰两优4号增产13.1%。温敏核不育系1109S及高产杂交稻组合1109S/8048的创制为高产育种提供了新的途径。

关键词: 水稻, CRISPR/Cas9, 温敏不育, TMS5, 杂交组合

Abstract:

Thermo-sensitive genic male-sterile (TGMS) gene tms5 is most widely used in the two-line hybrid breeding system in China. To develop novel rice thermo-sensitive male sterile lines, we knocked out the TMS5 genes of six elite japonica and four indica rice varieties by using CRISPR/Cas9 gene editing technology. By analyzing the critical sterility-inducing temperature (CIST) of the newly TGMS lines, it was found that the CIST of japonica TGMS lines ZG75S, CYGS, YG0618S, ZG07S, T0361S, and 7679S were between 28°C and 32°C, the CIST of indica TGMS lines 2537S, 6150S and 6379S were between 24°C and 28°C, and the CIST of indica TGMS line 1109S was lower than 23.5°C. These results indicated that the CIST of tms5 mutant from different genetic background materials was different. The TGMS lines with lower CIST could be obtained by knocking out the TMS5 from different genetic background materials. A hybrid rice combination 1109S/8048 had high quality and high yield. The yield of 1109S/8048 was 13.1% higher than that of Fengliangyou 4. The creation of the TGMS 1109S and the high-yield cross combination 1109S/8048 provides a new way for high-yield breeding.

Key words: rice, CRISPR/Cas9, thermo-sensitive genic male sterile, TMS5, cross combination

图1

CRISPR/Cas9-TMS5载体构建示意图 A: TMS5靶点位置。红色字母为靶点序列, 蓝色字母为PAM序列。B: pCAMBIA1301-Cas9-TMS5-gRNA重组载体结构示意图。LB: 左边界; RB: 右边界。"

表1

本研究所用的引物"

引物名称 Primer name 引物序列 Primer sequence (5′-3′)
TMS5-target-F TGGCCAGCGGCAAGTCATCGCCGG
TMS5-target-R AAACCCGGCGATGACTTGCCGCTG
M13F GTAAAACGACGGCCAG
GUS-F CGTCCGTCCTGTAGAAACCC
GUS-R GTGCGGATTCACCACTTGC
TMS5-CX-F TCCAACGCATAGCAGTAGTCG
TMS5-CX-R TGCCATCGTATCTCCGGTAAA
Cas9-F ACCGAGGGAATGAGAAAGCC
Cas9-R CCTTCTGGGTGGTCTGGTTC
HPT-F GAAGTGCTTGACATTGGGAGT
HPT-R AGATGTTGGCGACCTCGTATT

图2

T0代转基因植株的鉴定 ZG75(A)、CYG(B)、YG0618(C)、ZG07(D)、T0361(E)、7679(F)、2537(G)、6150(H)、6379(I)、1109(J)阳性转基因植株的PCR鉴定(上)和GUS组织化学染色(下)。M: DNA marker; 1~10: 转基因植株。"

图3

T0代纯合突变类型 红色字母为靶点序列; 蓝色字母为PAM序列; 绿色字母为插入的碱基; 横线表示碱基缺失; +表示插入; -表示缺失; WT表示野生型。"

附图1

PCR鉴定T1代无选择标记基因的突变株 ZG75(A)、CYG(B)、YG0618(C)、ZG07(D)、T0361(E)、7679(F)、2537(G)、6150(H)、6379(I)、1109(J)非转基因植株的PCR鉴定。M: DNA marker; WT: 野生型; 1: 阳性对照; 2~6: GUS染色不呈蓝色的T1代植株。"

图4

tms5突变体在不同温度处理条件下的花粉育性 A: tms5粳稻突变体的花粉育性; B: tms5籼稻突变体的花粉育性; C: 1109S在冷灌处理条件下的花粉育性。"

图5

1109S/8048杂交组合的表型鉴定 A: 1109S/8048杂交组合的表现, Bar = 20 cm; B: 1109S/8048杂交组合穗的表现, Bar = 5 cm。"

表2

杂交组合的农艺性状"

品种
Variety
株高
Plant height (cm)
有效穗
Panicle number per plant
千粒重
1000-grain weight (g)
穗长
Length of main panicle (cm)
穗粒数
Grain number per panicle
结实率
Seed-setting rate (%)
产量
Grain yield
(kg hm-2)
8048 110.4±3.5 10.7±1.0 16.8±1.6 27.5±1.0 229.3±15.8 74.6±8.2 8857.5±526.5
丰两优4号
Fengliangyou 4
133.1±4.5 11.5±1.2 27.5±2.1 25.3±1.1 193.5±14.6 75.7±5.6 9835.5±387.0
1109S/8048 120.6±4.0** 13.5±2.0** 22.6±1.5** 30.7±1.5** 258.4±23.6** 75.9±4.5 11124.0±279.0**
[1] 黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳峰, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建. 作物学报, 2018,44:844-851.
doi: 10.3724/SP.J.1006.2018.00844
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology. Acta Agron Sin, 2018,44:844-851 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00844
[2] 周延彪, 赵新辉, 唐晓丹, 周在为, 庄楚雄, 杨远柱. 基于CRISPR/Cas9技术的水稻反光敏不育基因csa突变体的获得. 杂交水稻, 2018,33(6):68-74.
Zhou Y B, Zhao X H, Tang X D, Zhou Z W, Zhuang C X, Yang Y Z. Acquisition of mutants of the reverse photoperiod-sensitive genic male sterility gene csa in rice based on CRISPR/Cas9 technology. Hybrid Rice, 2018,33(6):68-74 (in Chinese with English abstract).
[3] Zhou H, Zhou M, Yang Y Z, Li J, Zhu L Y, Jiang D G, Dong J F, Liu Q J, Gu L F, Zhou L Y, Feng M J, Qin P, Hu X C, Song C L, Shi J F, Song X W, Ni E D, Wu X J, Deng Q Y, Liu Z L, Chen M S, Liu Y G, Cao X F, Zhuang C X. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun, 2014,5:1-9.
[4] 周海, 周明, 杨远柱, 曹晓风, 庄楚雄. RNase ZS1加工UbL40 mRNA控制水稻温敏雄性核不育. 遗传, 2014,36:1274.
Zhou H, Zhou M, Yang Y Z, Cao X F, Zhuang C X. RNase ZS1 processes UbL40 mRNA and controls thermosensitive genic male sterility in rice. Hereditas (Beijing), 2014,36:1274 (in Chinese with English abstract).
[5] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotech, 2015,32:76-84.
[6] Baltes N J, Voytas D F. Enabling plant synthetic biology through genome engineering. Trends Biotechnol, 2015,33:120-131.
doi: 10.1016/j.tibtech.2014.11.008 pmid: 25496918
[7] Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H. Reassessment of the four yield-related genes Gn1a, DEP1, GS3 and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci, 2016,7:377.
pmid: 27066031
[8] Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci, 2017,8:298.
doi: 10.3389/fpls.2017.00298 pmid: 28326091
[9] Zhou Y B, Liu C, Tang D Y, Lu Y, Wang D, Yang Y Z, Gui J S, Zhao X Y, Li L G, Tang X D, Yu F, Li J L, Liu L L, Zhu Y H, Lin J Z, Liu X M. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. Plant Cell, 2018,30:1100-1118.
doi: 10.1105/tpc.17.01000 pmid: 29581216
[10] Wang H, Chu Z, Ma X, Li R, Liu Y. A high through-put protocol of plant genomic DNA preparation for PCR. Acta Agron Sin, 2013,39:1200-1205.
[11] 姜树坤, 张喜娟, 王嘉宇, 张凤鸣. 水稻幼穗-颖花发育的研究进展. 植物遗传资源学报, 2012,13:1018-1022.
Jiang S K, Zhang X J, Wang J Y, Zhang F M. Research advancement on young panicle and spikelet development in rice (Oryza sativa L.). J Plant Genet Resour, 2012,13:1018-1022 (in Chinese with English abstract).
[12] Zhou Y B, Liu H, Zhou X C, Yan Y Z, Du C Q, Li Y X, Liu D R, Zhang C S, Deng X L, Tang D Y, Zhao X Y, Zhu Y H, Lin J Z, Liu X M. Over-expression of a fungal NADP(H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol Breed, 2014,34:335-349.
[13] 李希陶, 刘耀光. 基因组编辑技术在水稻功能基因组和遗传改良中的应用. 生命科学, 2016,28:1243-1249.
Li X T, Liu Y G. Genome editing technology for functional genomics and genetic improvement in rice. Chin Bull Life Sci, 2016,28:1243-1249 (in Chinese with English abstract).
[14] Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E D, Jiang D G, Zhao B R, Zhuang C X. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep, 2016,6:1-12.
pmid: 28442746
[15] Svitashev S, Schwartz C, Lenderts B, Young J K, Ciqan A M. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun, 2016,7:13274.
doi: 10.1038/ncomms13274 pmid: 27848933
[16] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014,32:947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[17] Jacobs T B, LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015,15:16.
doi: 10.1186/s12896-015-0131-2 pmid: 25879861
[18] Zirkle C. Some forgotten records of hybridization and sex in plants 1716-1739. J Hered, 1932,23:433-447.
[19] Stiles W. A short history of the plant sciences. Nature, 1942,150:672-673.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!