作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1557-1565.doi: 10.3724/SP.J.1006.2020.04007
        
               		荐红举1,2(
), 霍强1,2(
), 高玉敏1,2, 李阳阳1,2, 谢玲1,2, 魏丽娟1,2, 刘列钊1,2, 卢坤1,2, 李加纳1,2,*(
)
                  
        
        
        
        
    
        
               		JIAN Hong-Ju1,2(
), HUO Qiang1,2(
), GAO Yu-Min1,2, LI Yang-Yang1,2, XIE Ling1,2, WEI Li-Juan1,2, LIU Lie-Zhao1,2, LU Kun1,2, LI Jia-Na1,2,*(
)
			  
			
			
			
                
        
    
摘要:
提高油菜产量是保障国家粮油安全的重要举措。作物“源”“流”“库”理论表明, 充足的光合产物(源)是高产的前提, 而叶绿素是直接参与光合作用的物质, 因此, 选育高叶绿素含量的甘蓝型油菜是提高产量的重要途径。本课题组前期对全球收集的588份优异油菜种质资源进行5X重测序, 获得385,692个高质量SNP标记。利用SPAD-502叶绿素仪于2018—2019连续2年测定苗期完全伸展的叶片叶绿素总量, 结合获得的SNP标记进行全基因组关联分析(genome-wide association study, GWAS), 筛选与叶绿素含量显著关联的SNP位点。结果表明, 2018年鉴定到5个显著关联的SNP位点, 贡献率为5.51%~7.89%, 其中S6_3493805位点贡献率最大; 2019年检测到46个SNP位点, 贡献率为7.29%~10.34%, 其中S13_11413088位点贡献率最大。将显著关联SNP位点上下游各500 kb区间内的基因与参考基因组比对, 初步筛选出2022个油菜基因。将其基因序列在拟南芥基因组内进行BLAST比对, 结合前人已报道的拟南芥同源基因功能, 筛选到23个候选基因, 其中5个属于叶绿素合成途径同源基因。本研究结果为后续油菜叶片叶绿素含量的遗传改良奠定了基础。
| [1] |  
											  Von Wettstein D, Gough S, Kannangara C G. Chlorophyll biosynthesis. Plant Cell, 1995,7:1039-1057. 
											 												 doi: 10.1105/tpc.7.7.1039 pmid: 12242396  | 
										
| [2] |  
											  Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol, 2004,56:1-14. 
											 												 doi: 10.1007/s11103-004-2331-3  | 
										
| [3] |  
											  Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol, 2006,9:248-255. 
											 												 doi: 10.1016/j.pbi.2006.03.011 pmid: 16603411  | 
										
| [4] |  
											  Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol, 2007,58:321-346. 
											 												 doi: 10.1146/annurev.arplant.57.032905.105448 pmid: 17227226  | 
										
| [5] |  
											  Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith A G, Tanaka A, Terry M J. The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci, 2010,15:488-498. 
											 												 doi: 10.1016/j.tplants.2010.05.012 pmid: 20598625  | 
										
| [6] |  
											  Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res, 2010,105:143-166. 
											 												 doi: 10.1007/s11120-010-9568-2  | 
										
| [7] |  
											  Buhr F, El Bakkouri M, Valdez O, Pollmann S, Lebedev N, Reinbothe S, Reinbothe C. Photoprotective role of NADPH: protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA, 2008,105:12629-12634. 
											 												 doi: 10.1073/pnas.0803950105 pmid: 18723681  | 
										
| [8] |  
											  Zhu L, Yang Z, Zeng X, Gao J, Liu J, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Mol Biol, 2017,93:579-592. 
											 												 doi: 10.1007/s11103-017-0583-y pmid: 28108964  | 
										
| [9] |  
											  Williams Carrier R, Zoschke R, Belcher S, Pfalz J, Barkan A. A major role for the plastid-encoded RNA polymerase complex in the expression of plastid transfer RNAs. Plant Physiol, 2014,164:239-248. 
											 												 doi: 10.1104/pp.113.228726  | 
										
| [10] |  
											  Zhang K, Zhang Y, Chen G, Tian J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun, 2009,37:499-511. 
											 												 doi: 10.1556/CRC.37.2009.4.3  | 
										
| [11] |  
											  Feng B, Liu P, Li G, Dong S T, Wang F H, Kong L A, Zhang J W. Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agron Crop Sci, 2014,200:143-155. 
											 												 doi: 10.1111/jac.12045  | 
										
| [12] |  
											  Kassahun B, Bidinger F R, Hash C T, Kuruvinashetti M S. Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica, 2010,172:351-362. 
											 												 doi: 10.1007/s10681-009-0108-0  | 
										
| [13] |  
											  Cai H G, Chu Q, Yuan L X, Liu J C, Chen X H, Chen F J, Mi G H, Zhang F S. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Mol Breed, 2012,30:251-266. 
											 												 doi: 10.1007/s11032-011-9615-5  | 
										
| [14] |  
											  Czyczylo Mysza I, Tyrka M, Marcinska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie S A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed, 2013,32:189-210. 
											 												 doi: 10.1007/s11032-013-9862-8 pmid: 23794940  | 
										
| [15] |  
											  Jiang S, Zhang X, Zhang F, Xu Z, Chen W, Li Y. Identification and fine mapping of qCTH4, a quantitative trait loci controlling the chlorophyll content from tillering to heading in rice (Oryza sativa L.). J Hered, 2012,103:720-726. 
											 												 doi: 10.1093/jhered/ess041  | 
										
| [16] |  
											  Dhanapal A P, Ray J D, Singh S K, Hoyos Villegas V, Smith J R, Purcell L C, Fritschi F B. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol, 2016,16:174. 
											 												 doi: 10.1186/s12870-016-0861-x pmid: 27488358  | 
										
| [17] |  
											  Wang Y K, He Y J, Yang M, He J B, Xu P, Shao M Q, Chu P, Guan R Z. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus. Sci Rep, 2016,6:31419. doi: 10.1038/srep31419. 
											 												 doi: 10.1038/srep31419 pmid: 27506952  | 
										
| [18] |  
											  Qian L W, Voss Fels K, Cui Y X, Jan H U, Samans B, Obermeier C, Qian W, Snowdon R J. Deletion of a stay-green gene associates with adaptive selection in Brassica napus. Mol Plant, 2016,9:1559-1569. 
											 												 doi: 10.1016/j.molp.2016.10.017 pmid: 27825945  | 
										
| [19] |  
											  Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchiary N, Choi S R, Lim Y P, Piao Z Y. Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (. Sci Hortic-Amsterdam, 2012,147:42-48. 
											 												 doi: 10.1016/j.scienta.2012.09.004  | 
										
| [20] |  
											  Luo J. Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol, 2015,24:31-38. 
											 												 doi: 10.1016/j.pbi.2015.01.006 pmid: 25637954  | 
										
| [21] |  
											  Su J J, Li L B, Zhang C, Wang C X, Gu L J, Wang H T, Wei H L, Liu Q B, Huang L, Yu S X. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet, 2018,131:1299-1314. 
											 												 doi: 10.1007/s00122-018-3079-5 pmid: 29497767  | 
										
| [22] |  
											  Li T G, Ma X F, Li N Y, Zhou L, Liu Z, Han H Y, Gui Y J, Bao Y M, Chen J Y, Dai X F. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J, 2017,15:1520-1532. 
											 												 doi: 10.1111/pbi.12734 pmid: 28371164  | 
										
| [23] |  
											  Fahrenkrog A M, Neves L G, Resende M F R, Vazquez A I, de los Campos G, Dervinis C, Sykes R, Davis M, Davenport R, Barbazuk W B, Kirst M. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides. New Phytol, 2017,213:799-811. 
											 												 doi: 10.1111/nph.14154 pmid: 27596807  | 
										
| [24] |  
											  Wei W, Mesquita A C O, Figueiro A D, Wu X, Manjunatha S, Wickland D P, Hudson M E, Juliatti F C, Clough S J. Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics, 2017,18:849. 
											 												 doi: 10.1186/s12864-017-4160-1 pmid: 29115920  | 
										
| [25] |  
											  Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Paterson A H, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154. 
											 												 doi: 10.1038/s41467-019-09134-9 pmid: 30858362  | 
										
| [26] |  
											  Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953. 
											 												 doi: 10.1126/science.1253435 pmid: 25146293  | 
										
| [27] |  
											  Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J, Snowdon R, Friedt W, Li X R, Qian W. Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407. 
											 												 doi: 10.1038/srep14407 pmid: 26394547  | 
										
| [28] |  
											  Wang X D, Chen L, Wang A N, Wang H, Tian J H, Zhao X P, Chao H B, Zhao Y J, Zhao W G, Xiang J, Gan J P, Li M T. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol, 2016,16:71. 
											 												 doi: 10.1186/s12870-016-0759-7 pmid: 27000872  | 
										
| [29] |  
											  Jian H J, Zhang A X, Ma J Q, Wang T Y, Yang B, Shuang L S, Liu M, Li J N, Xu X F, Paterson A H, Liu L Z. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics, 2019,9:390. 
											 												 doi: 10.1186/1471-2164-9-390 pmid: 18713468  | 
										
| [30] |  
											  Shen Y S, Xiang Y, Xu E S, Ge X H, Li Z Y. Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived  Brassica napus DH population. Front Plant Sci, 2018,9:390. 
											 												 doi: 10.3389/fpls.2018.00390 pmid: 29643859  | 
										
| [31] |  
											  Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452. 
											 												 doi: 10.1038/srep36452 pmid: 27811979  | 
										
| [32] |  
											  Wang J, Xian X H, Xu X F, Qu C M, Lu K, Li J N, Liu L Z. Genome-wide association mapping of seed coat color in Brassica napus.  J Agric Food Chem, 2017,65:5229-5237. 
											 												 doi: 10.1021/acs.jafc.7b01226 pmid: 28650150  | 
										
| [33] |  
											  Xiao Z C, Zhang C, Tang F, Yang B, Zhang L Y, Liu J S, Huo Q, Wang S F, Li S T, Wei L J, Du H, Qu C M, Lu K, Li J N, Li N N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. Biotechnol Biofuels, 2019,12:216. 
											 												 doi: 10.1186/s13068-019-1557-x pmid: 31528204  | 
										
| [34] |  
											  Ferreira V D S, Anna C S. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol, 2017,33:20. 
											 												 doi: 10.1007/s11274-016-2181-6 pmid: 27909993  | 
										
| [35] |  
											  Peltier J B, Ytterberg A J, Sun Q, van Wijk K J. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem, 2004,279:49367-49383. 
											 												 doi: 10.1074/jbc.M406763200 pmid: 15322131  | 
										
| [36] |  
											  Wientjes E, Croce R. The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem J, 2011,433:477-485. 
											 												 doi: 10.1042/BJ20101538 pmid: 21083539  | 
										
| [37] |  
											  Otani T, Yamamoto H, Shikanai T. Stromal loop of lhca6 is responsible for the linker function required for the NDH-PSI supercomplex formation. Plant Cell Physiol, 2017,58:851-861. 
											 												 doi: 10.1093/pcp/pcx009 pmid: 28184910  | 
										
| [38] |  
											  Chang C S J, Li Y H, Chen L T, Chen W C, Hsieh W P, Shin J, Jane W N, Chou S J, Choi G, Hu J M, Somerville S, Wu S H. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant J, 2008,54:205-219. 
											 												 doi: 10.1111/j.1365-313X.2008.03401.x pmid: 18182030  | 
										
| [39] |  
											  Chang C S J, Maloof J N, Wu S H. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol, 2011,156:228-239. 
											 												 doi: 10.1104/pp.111.175042  | 
										
| [1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. | 
| [2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. | 
| [3] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. | 
| [4] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. | 
| [5] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. | 
| [6] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. | 
| [7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. | 
| [8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. | 
| [9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. | 
| [10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. | 
| [11] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. | 
| [12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. | 
| [13] | 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471. | 
| [14] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. | 
| [15] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. | 
										
  | 
								||