欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1557-1565.doi: 10.3724/SP.J.1006.2020.04007

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

用全基因组关联分析筛选甘蓝型油菜叶片叶绿素含量候选基因

荐红举1,2(), 霍强1,2(), 高玉敏1,2, 李阳阳1,2, 谢玲1,2, 魏丽娟1,2, 刘列钊1,2, 卢坤1,2, 李加纳1,2,*()   

  1. 1 西南大学农学与生物科技学院, 重庆 400715
    2 西南大学现代农业科学研究院, 重庆 400715
  • 收稿日期:2020-01-12 接受日期:2020-04-15 出版日期:2020-10-12 网络出版日期:2020-04-27
  • 通讯作者: 李加纳
  • 作者简介:荐红举, E-mail: hjjian518@swu.edu.cn;|霍强, E-mail: 354011524@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0100504-05);重庆市民生工程主题专项(cstc2016shms-ztzx80020)

Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis

JIAN Hong-Ju1,2(), HUO Qiang1,2(), GAO Yu-Min1,2, LI Yang-Yang1,2, XIE Ling1,2, WEI Li-Juan1,2, LIU Lie-Zhao1,2, LU Kun1,2, LI Jia-Na1,2,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2020-01-12 Accepted:2020-04-15 Published:2020-10-12 Published online:2020-04-27
  • Contact: Jia-Na LI
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100504-05);Special Project of Chongqing People’s Livelihood(cstc2016shms-ztzx80020)

摘要:

提高油菜产量是保障国家粮油安全的重要举措。作物“源”“流”“库”理论表明, 充足的光合产物(源)是高产的前提, 而叶绿素是直接参与光合作用的物质, 因此, 选育高叶绿素含量的甘蓝型油菜是提高产量的重要途径。本课题组前期对全球收集的588份优异油菜种质资源进行5X重测序, 获得385,692个高质量SNP标记。利用SPAD-502叶绿素仪于2018—2019连续2年测定苗期完全伸展的叶片叶绿素总量, 结合获得的SNP标记进行全基因组关联分析(genome-wide association study, GWAS), 筛选与叶绿素含量显著关联的SNP位点。结果表明, 2018年鉴定到5个显著关联的SNP位点, 贡献率为5.51%~7.89%, 其中S6_3493805位点贡献率最大; 2019年检测到46个SNP位点, 贡献率为7.29%~10.34%, 其中S13_11413088位点贡献率最大。将显著关联SNP位点上下游各500 kb区间内的基因与参考基因组比对, 初步筛选出2022个油菜基因。将其基因序列在拟南芥基因组内进行BLAST比对, 结合前人已报道的拟南芥同源基因功能, 筛选到23个候选基因, 其中5个属于叶绿素合成途径同源基因。本研究结果为后续油菜叶片叶绿素含量的遗传改良奠定了基础。

关键词: 甘蓝型油菜, 叶绿素含量, 全基因组关联分析, 候选基因

Abstract:

Increasing rapeseed production is important to ensure the national food and oil security. According to the theory of crop source and sink, sufficient photosynthate (sources) is the premise of high yield, and chlorophyll is the important substance for photosynthesis. Therefore, breeding high chlorophyll content Brassica napus is an important way to ensure high yield. In our previous study, 588 excellent germplasm resources collected worldwide were re-sequenced with 5x and 385,692 high-quality SNP markers were obtained. SPAD-502 chlorophyll meter was used to measure the total chlorophyll content of mature leaves in 2018-2019. Genome wide association study (GWAS) was conducted to screen SNP sites significantly related to chlorophyll content. Five SNP loci were identified in 2018, with a contribution rate of 5.51%-7.89%, of which S6_3493805 had the largest contribution. 46 SNP loci were detected in 2019, with a contribution rate of 7.29%-10.34%, of which S13_11413088 had the largest contribution. In total, 2022 rapeseed genes were screened out by comparing the reference genome with genes in the regions of the 500 kb before and after the SNP. Based on the function of Arabidopsis homologous genes previously reported, screened 23 candidate genes, among which five were homologous genes in chlorophyll synthesis pathway. These results lay a foundation for the genetic improvement of chlorophyll content in leaves of B. napus in future.

Key words: Brassica napus, chlorophyll content, GWAS, candidate genes

表1

候选基因引物"

基因Gene 引物序列Primer sequence (5°-3°)
BnaA04g00600D F: AAATGTCGTTGAGGAATTACGC; R: TGAATGATATACGTCAGCACCA
BnaC09g54390D F: AAGGAGCTAACACAATGACTGA; R: GGTATCATCACAGGTAACCCAT
BnaC03g18820D F: AATCATGTTTCCATTAGCCACG; R: CATTACCACCGTTGAAAACCAA
BnaC06g24160D F: AATGTTGCGCATTATCTTCCTC; R: TGTTTGTAGTGTTTCCAGGAGT
BnaC07g39280D F: AGAAAACGATGCTTATGCTGAC; R: CATAGCTGCAGAGATATCGCTA
BnaA04g00500D F: AGCTCATATACATTGTGGAGCA; R: TGCTGCTAGATTGGTCTAAGAG
BnaA02g24670D F: CTAATCGAATCAAGCCCTGTTG; R: GGTGAAAACGCAAAGAAATTGG
BnaC02g01240D F: CTCAAGGAGCTATTGGAATTGC; R: TATCCAGCAATAGGTGTACGAC
BnaC03g20950D F: CTTTATGGTGTTGGCCAAGTAC; R: AACTTTACCACGCCGTATTTTC
BnaC05g38600D F: GACTCTCTGAAGATACTGAGGC; R: ACTCTTGATCACCGTATACGTC
BnaA10g02050D F: GAGCTGGAACAATAACTCCTCT; R: CACAGTTTCTTTGCCTTCTCTG
BnaC05g10770D F: GAGTGTTCCTGATTGTATGCAC; R: AGATGTGCCAATCCAAAAGAAC
BnaC04g01850D F: GATAGGAACGGTGATGGTTTTG; R: TTCCGTCACGAAATTAAAACCC
BnaC02g25030D F: GTAAATGTGCCTGATGAGGTTG; R: TGAACAATCTCTTCGTCAAGGA
BnaA06g06000D F: GTCGCTGCTTAAACAGTTACAA; R: GAAACCCAACAAAGAGTGAACA
BnaA05g01720D F: GTTCACAACGTCAATGATCACA; R: GTGGCCCAAGAATCAAAGATTT
BnaC08g27000D F: GTTTCTGAACGAACAGGTTGAA; R: ATTTAAGCAGCAGCAGAAGTTC
BnaC09g05970D F: TTACTAGCTTGGCTCACACTAC; R: CGTTCTCATCAACAACACTCAG
BnaC09g05970D F: TTACTAGCTTGGCTCACACTAC; R: CGTTCTCATCAACAACACTCAG
BnaA01g20460D F: TTATCAAGCGTGCGAAGTAAAG; R: CGCGCTGATCTTAACCTAGTTA
BnaC08g27310D F: TTTGCTACCTGTTGAAAACGAC; R: TTATTCAACTGTGACAAAGCCG

表2

甘蓝型油菜叶绿素含量的表型数据统计分析"

性状
Trait
环境
Environment
均值±标准差
Mean ± SD
范围
Range
变异系数
CV (%)
叶绿素含量 2018 47.79±5.39 33.44-65.82 11.27
Chlorophyll content 2019 46.37±5.90 32.92-72.04 12.73

图1

甘蓝型油菜叶片叶绿素含量的频次分布"

图2

甘蓝型油菜叶绿素含量在各模型中的QQ图"

图3

甘蓝型油菜叶绿素含量在最佳模型中的曼哈顿图"

表3

最佳模型下叶绿素含量显著位点表"

环境Environment 位点
SNP
染色体
Chr.
位置
Position
阈值
lg (P-value)
贡献率
R2 (%)
2018 S1_12845378 A03 12,845,378 5.73 5.51
S6_3493805 A06 3,493,805 7.49 7.89
S6_3812220 A06 3,812,220 6.05 6.10
S10_4969863 A10 4,969,863 6.25 6.23
S14_37741561 C04 37,741,561 5.69 5.67
2019 S1_12688640 A01 12,688,640 6.39 8.42
S1_12540615 A01 12,540,615 6.10 8.24
S1_10570293 A01 10,570,293 5.93 8.51
S1_12628926 A01 12,628,926 5.86 8.28
S1_12540545 A01 12,540,545 5.84 7.67
S1_12540622 A01 12,540,622 5.83 7.66
环境Environment 位点
SNP
染色体
Chr.
位置
Position
域值
lg (P-value)
贡献率
R2 (%)
2019 S1_12628563 A01 12,628,563 5.79 9.76
S1_12568566 A01 12,568,566 5.78 7.55
S2_17839296 A02 17,839,296 6.91 9.73
S3_13514793 A03 13,514,793 5.73 7.72
S4_547942 A04 547,942 5.93 8.08
S8_16108365 A08 16,108,365 6.46 8.44
S8_16192480 A08 16,192,480 5.88 7.80
S8_16181282 A08 16,181,282 5.78 7.85
S8_16103637 A08 16,103,637 5.61 7.97
S8_16181355 A08 16,181,355 5.60 7.29
S9_10532790 A09 10,532,790 6.18 8.70
S10_14050715 A10 14,050,715 5.61 7.72
S12_20495602 C02 20,495,602 5.95 9.35
S12_22225349 C02 22,225,349 5.74 8.76
S13_11413088 C03 11,413,088 7.01 10.34
S13_11423629 C03 11,423,629 6.95 9.31
S13_11415175 C03 11,415,175 6.61 8.92
S13_11433444 C03 11,433,444 6.39 8.88
S13_11433450 C03 11,433,450 6.38 8.87
S13_9816561 C03 9,816,561 6.06 8.70
S13_48351338 C03 48,351,338 6.00 8.06
S13_11249216 C03 11,249,216 5.97 8.22
S14_7018412 C04 7,018,412 6.81 9.39
S14_1487936 C04 1,487,936 5.73 7.96
S14_5798300 C04 5,798,300 5.68 8.45
S14_36521995 C04 36,521,995 5.60 7.95
S15_6002527 C05 6,002,527 6.06 8.65
S16_24042352 C06 24,042,352 6.55 9.94
S16_14397036 C06 14,397,036 6.31 8.84
S16_25797577 C06 25,797,577 6.25 8.34
S16_25797598 C06 25,797,598 6.14 8.15
S16_25233735 C06 25,233,735 6.14 8.09
S16_25797558 C06 25,797,558 6.00 8.46
S16_25234451 C06 25,234,451 5.97 8.45
S16_25234262 C06 25,234,262 5.92 8.11
S16_25797570 C06 25,797,570 5.89 8.06
S16_25234230 C06 25,234,230 5.88 8.31
S18_31711591 C08 31,711,591 6.32 8.85
S18_28228959 C08 28,228,959 5.77 8.36
S19_32818852 C09 32,818,852 5.62 8.15

表4

叶绿素含量候选基因"

基因名字
Gene name
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
BnaA01g20460D A01:12331065-1233745 AT3G48740 Nodulin MtN3 family protein
BnaA02g24670D A02:17989410-17990090 AT5G46780 VQ motif-containing protein
BnaA04g00500D A04:365464-366530 AT3G61890 Homeobox 12 (HB-12)
BnaA04g00600D A04:460722-461017 AT3G61640 Arabinogalactan protein 20 (AGP20)
BnaA05g01720D A05:984996-986020 AT2G40490 HEME2
BnaA06g06000D A06:3306811-3307795 AT1G10200 WLIM1
BnaA10g02050D A10:1025298-1027102 AT1G03630 Protochlorophyllide oxidoreductase C (POR C)
BnaC02g01240D C02:511615-513517 AT5G08280 Hydroxymethylbilane synthase (HEMC)
BnaC02g25030D C02:22402218-22403498 AT1G07440 NAD(P)-binding Rossmann-fold superfamily protein
BnaC03g18820D C03:9634933-9635479 AT2G33830 Dormancy/auxin associated family protein
BnaC03g20950D C03:11192271-11192876 AT2G37970 SOUL-1
BnaC04g01850D C04:1467437-1468078 AT2G41410 Calcium-binding EF-hand family protein
BnaC05g10770D C05:6194068-6195531 AT1G14480 Ankyrin repeat family protein
基因名字
Gene name
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
BnaC05g38600D C05:37280225-37281849 AT3G14930 HEME1
BnaC06g24160D C06:25958767-25959390 AT1G72610 Germin-like protein 1 (GER1)
BnaC07g39280D C07:40238482-40239858 AT4G25080 Magnesium-protoporphyrin IX methyltransferase (CH LM)
BnaC08g27000D C08:28191454-28192970 AT3G56090 Ferritin 3 (FER3)
BnaC08g27310D C08:28357417-28358091 AT3G56360 Unknown protein
BnaC09g05970D C09:3640560-3642915 AT5G63570 Glutamate-1-semialdehyde-2,1-aminomutase (GSA1)
BnaC03g18980D chrC03:9831772-9832572 AT2G34430 Light-harvesting chlorophyll-protein complex II subunit B1 (LHB1B1)
BnaC02g25060D chrC02:22446772-22448037 AT1G78600 Light-regulated zinc finger protein 1 (LZF1)
BnaA04g00660D chrA04:488057-489279 AT3G61470 Photosystem I light harvesting complex gene 2 (LHCA2)
BnaA08g22200D chrA08:16221799-16222764 AT1G19150 Photosystem I light harvesting complex gene 6 (LHCA6)

图4

甘蓝型油菜叶片叶绿素含量候选基因定量验证"

[1] Von Wettstein D, Gough S, Kannangara C G. Chlorophyll biosynthesis. Plant Cell, 1995,7:1039-1057.
doi: 10.1105/tpc.7.7.1039 pmid: 12242396
[2] Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol, 2004,56:1-14.
doi: 10.1007/s11103-004-2331-3
[3] Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol, 2006,9:248-255.
doi: 10.1016/j.pbi.2006.03.011 pmid: 16603411
[4] Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol, 2007,58:321-346.
doi: 10.1146/annurev.arplant.57.032905.105448 pmid: 17227226
[5] Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith A G, Tanaka A, Terry M J. The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci, 2010,15:488-498.
doi: 10.1016/j.tplants.2010.05.012 pmid: 20598625
[6] Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res, 2010,105:143-166.
doi: 10.1007/s11120-010-9568-2
[7] Buhr F, El Bakkouri M, Valdez O, Pollmann S, Lebedev N, Reinbothe S, Reinbothe C. Photoprotective role of NADPH: protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA, 2008,105:12629-12634.
doi: 10.1073/pnas.0803950105 pmid: 18723681
[8] Zhu L, Yang Z, Zeng X, Gao J, Liu J, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Mol Biol, 2017,93:579-592.
doi: 10.1007/s11103-017-0583-y pmid: 28108964
[9] Williams Carrier R, Zoschke R, Belcher S, Pfalz J, Barkan A. A major role for the plastid-encoded RNA polymerase complex in the expression of plastid transfer RNAs. Plant Physiol, 2014,164:239-248.
doi: 10.1104/pp.113.228726
[10] Zhang K, Zhang Y, Chen G, Tian J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun, 2009,37:499-511.
doi: 10.1556/CRC.37.2009.4.3
[11] Feng B, Liu P, Li G, Dong S T, Wang F H, Kong L A, Zhang J W. Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agron Crop Sci, 2014,200:143-155.
doi: 10.1111/jac.12045
[12] Kassahun B, Bidinger F R, Hash C T, Kuruvinashetti M S. Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica, 2010,172:351-362.
doi: 10.1007/s10681-009-0108-0
[13] Cai H G, Chu Q, Yuan L X, Liu J C, Chen X H, Chen F J, Mi G H, Zhang F S. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Mol Breed, 2012,30:251-266.
doi: 10.1007/s11032-011-9615-5
[14] Czyczylo Mysza I, Tyrka M, Marcinska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie S A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed, 2013,32:189-210.
doi: 10.1007/s11032-013-9862-8 pmid: 23794940
[15] Jiang S, Zhang X, Zhang F, Xu Z, Chen W, Li Y. Identification and fine mapping of qCTH4, a quantitative trait loci controlling the chlorophyll content from tillering to heading in rice (Oryza sativa L.). J Hered, 2012,103:720-726.
doi: 10.1093/jhered/ess041
[16] Dhanapal A P, Ray J D, Singh S K, Hoyos Villegas V, Smith J R, Purcell L C, Fritschi F B. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol, 2016,16:174.
doi: 10.1186/s12870-016-0861-x pmid: 27488358
[17] Wang Y K, He Y J, Yang M, He J B, Xu P, Shao M Q, Chu P, Guan R Z. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus. Sci Rep, 2016,6:31419. doi: 10.1038/srep31419.
doi: 10.1038/srep31419 pmid: 27506952
[18] Qian L W, Voss Fels K, Cui Y X, Jan H U, Samans B, Obermeier C, Qian W, Snowdon R J. Deletion of a stay-green gene associates with adaptive selection in Brassica napus. Mol Plant, 2016,9:1559-1569.
doi: 10.1016/j.molp.2016.10.017 pmid: 27825945
[19] Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchiary N, Choi S R, Lim Y P, Piao Z Y. Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (. Sci Hortic-Amsterdam, 2012,147:42-48.
doi: 10.1016/j.scienta.2012.09.004
[20] Luo J. Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol, 2015,24:31-38.
doi: 10.1016/j.pbi.2015.01.006 pmid: 25637954
[21] Su J J, Li L B, Zhang C, Wang C X, Gu L J, Wang H T, Wei H L, Liu Q B, Huang L, Yu S X. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet, 2018,131:1299-1314.
doi: 10.1007/s00122-018-3079-5 pmid: 29497767
[22] Li T G, Ma X F, Li N Y, Zhou L, Liu Z, Han H Y, Gui Y J, Bao Y M, Chen J Y, Dai X F. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J, 2017,15:1520-1532.
doi: 10.1111/pbi.12734 pmid: 28371164
[23] Fahrenkrog A M, Neves L G, Resende M F R, Vazquez A I, de los Campos G, Dervinis C, Sykes R, Davis M, Davenport R, Barbazuk W B, Kirst M. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides. New Phytol, 2017,213:799-811.
doi: 10.1111/nph.14154 pmid: 27596807
[24] Wei W, Mesquita A C O, Figueiro A D, Wu X, Manjunatha S, Wickland D P, Hudson M E, Juliatti F C, Clough S J. Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics, 2017,18:849.
doi: 10.1186/s12864-017-4160-1 pmid: 29115920
[25] Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Paterson A H, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154.
doi: 10.1038/s41467-019-09134-9 pmid: 30858362
[26] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[27] Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J, Snowdon R, Friedt W, Li X R, Qian W. Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407.
doi: 10.1038/srep14407 pmid: 26394547
[28] Wang X D, Chen L, Wang A N, Wang H, Tian J H, Zhao X P, Chao H B, Zhao Y J, Zhao W G, Xiang J, Gan J P, Li M T. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol, 2016,16:71.
doi: 10.1186/s12870-016-0759-7 pmid: 27000872
[29] Jian H J, Zhang A X, Ma J Q, Wang T Y, Yang B, Shuang L S, Liu M, Li J N, Xu X F, Paterson A H, Liu L Z. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics, 2019,9:390.
doi: 10.1186/1471-2164-9-390 pmid: 18713468
[30] Shen Y S, Xiang Y, Xu E S, Ge X H, Li Z Y. Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci, 2018,9:390.
doi: 10.3389/fpls.2018.00390 pmid: 29643859
[31] Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452.
doi: 10.1038/srep36452 pmid: 27811979
[32] Wang J, Xian X H, Xu X F, Qu C M, Lu K, Li J N, Liu L Z. Genome-wide association mapping of seed coat color in Brassica napus. J Agric Food Chem, 2017,65:5229-5237.
doi: 10.1021/acs.jafc.7b01226 pmid: 28650150
[33] Xiao Z C, Zhang C, Tang F, Yang B, Zhang L Y, Liu J S, Huo Q, Wang S F, Li S T, Wei L J, Du H, Qu C M, Lu K, Li J N, Li N N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. Biotechnol Biofuels, 2019,12:216.
doi: 10.1186/s13068-019-1557-x pmid: 31528204
[34] Ferreira V D S, Anna C S. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol, 2017,33:20.
doi: 10.1007/s11274-016-2181-6 pmid: 27909993
[35] Peltier J B, Ytterberg A J, Sun Q, van Wijk K J. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem, 2004,279:49367-49383.
doi: 10.1074/jbc.M406763200 pmid: 15322131
[36] Wientjes E, Croce R. The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem J, 2011,433:477-485.
doi: 10.1042/BJ20101538 pmid: 21083539
[37] Otani T, Yamamoto H, Shikanai T. Stromal loop of lhca6 is responsible for the linker function required for the NDH-PSI supercomplex formation. Plant Cell Physiol, 2017,58:851-861.
doi: 10.1093/pcp/pcx009 pmid: 28184910
[38] Chang C S J, Li Y H, Chen L T, Chen W C, Hsieh W P, Shin J, Jane W N, Chou S J, Choi G, Hu J M, Somerville S, Wu S H. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant J, 2008,54:205-219.
doi: 10.1111/j.1365-313X.2008.03401.x pmid: 18182030
[39] Chang C S J, Maloof J N, Wu S H. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol, 2011,156:228-239.
doi: 10.1104/pp.111.175042
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[4] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471.
[14] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[15] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!