欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1819-1830.doi: 10.3724/SP.J.1006.2020.02027

• 综述 •    下一篇

作物对大气CO2浓度升高生理响应研究进展

李彦生1,2,*(), 金剑2,*(), 刘晓冰2   

  1. 1中国农业科学院农业环境与可持续发展研究所 / 农业农村部农业环境重点实验室, 北京 100081
    2中国科学院东北地理与农业生态研究所 / 中国科学院黑土区农业生态重点实验室, 黑龙江哈尔滨 150081
  • 收稿日期:2020-04-15 接受日期:2020-08-19 出版日期:2020-12-12 网络出版日期:2020-11-25
  • 通讯作者: 李彦生,金剑
  • 基金资助:
    农业农村部农业环境重点实验室开放基金;国家重点研发计划项目(2017YFD0300300);国家自然科学基金项目(31501259)

Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review

Yan-Sheng LI1,2,*(), Jian JIN2,*(), Xiao-Bing LIU2   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences / Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Key Laboratory of Mollisols Agroecology / Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
  • Received:2020-04-15 Accepted:2020-08-19 Published:2020-12-12 Published online:2020-11-25
  • Contact: Yan-Sheng LI,Jian JIN
  • Supported by:
    Key Laboratory for Agricultural Environment, the Ministry of Agriculture of China;National Key Research and Development Program of China(2017YFD0300300);National Natural Science Foundation of China(31501259)

摘要:

全球大气二氧化碳(CO2)浓度不断升高对农业生产带来巨大影响。二氧化碳是作物光合作用的底物, 其浓度的升高理论上有利于作物光合作用能力的提高, 从而促进作物生物量和产量的形成。但已有研究表明, 大气CO2浓度升高对作物产量的促进作用小于预期, 同时还存在使作物营养品质变劣的风险, 相关机制尚不清楚。为此, 本文从植物(作物)叶片对CO2的吸收和固定生理基础入手, 综述了不同类型作物关键光合生理指标如: 净光合速率、叶片胞间CO2浓度、Rubisco酶最大羧化速率及Rubp再生速率等对大气CO2浓度的响应差异。以作物整株水平碳-氮代谢平衡为基础, 总结了解释光合适应现象的2种主要假说,即“源-库”调节机制和N素抑制机制。综述了大气CO2浓度升高对不同作物籽粒蛋白质、脂肪、矿质元素和维生素等关键营养指标浓度的影响。分析了未来大气CO2浓度和温度升高的交互作用对作物生产所带来的潜在影响。展望了本领域未来需要关注的主要研究方向。该综述可以为准确评估未来气候条件下作物产量和品质变化, 最大发挥大气CO2浓度升高所带来的“肥料效应”, 减缓气候变化对作物生产带来的不利影响提供理论参考。

关键词: 气候变化, 全球变暖, 水稻, 小麦, 大豆, 玉米

Abstract:

The increase of atmospheric concentration of carbon dioxide ([CO2]) has substantially had a huge impact on agricultural production. As the sole substrate for photosynthesis, the increase of atmospheric [CO2] stimulates the net photosynthetic rate, thus promoting the biomass accumulation and yield level in many crops. However, the ‘fertilization’ effect of the elevated atmospheric [CO2] on crop production is less than theoretical expectation, and elevated [CO2] increases the health risk due to the decline in grain quality. The relevant mechanism is still unclear. In this paper, we analyzed the effect of elevated [CO2] on crop photosynthesis system, reviewed various responses of key photosynthesis indicators, such as the leaf net photosynthetic rate, the intercellular [CO2] of leaves, maximum carboxylation rate of Rubisco (Vc, max), and the capacity of Rubp-regeneration (Jmax) in different crops, in response to the elevated atmospheric [CO2]. Based on the C-N metabolism of the whole plant, we summarized two prevailing hypotheses about the acclimation of photosynthetic capacity under elevated atmospheric [CO2], namely the source-sink regulation mechanism and N limitation mechanism, respectively. We summarized the influence of elevated [CO2] on the nutritional quality of the grain, such as the change in the protein, oil, mineral elements, and vitamin concentrations. Furthermore, we also reviewed the potential interactive effect of the elevated atmospheric temperature and [CO2] on crop growth. Finally, the main research directions of this field in the future are proposed. In summary, this review can provide theoretical reference for accurately assessing the changes in crop yield and quality under climate change conditions, maximizing the ‘fertilization’ effect of elevated [CO2], and mitigating the adverse effects of climate change on crop production.

Key words: climate change, global warming, rice, wheat, soybean, maize

图1

1958-2020年大气CO2浓度年平均和月平均变化 图中蓝色虚线内数字代表每10年间大气CO2浓度年平均值的年增加量; 黑色虚线代表目前大气CO2浓度最高值为2019年5月测量值。"

图2

C3植物卡尔文循环(黑色线条循环)和光呼吸(红色线条循环) 示意图参考https://www.knowablemagazine.org/article/sustainability/2017/photosynthesis-fix。"

图3

大气CO2浓度升高条件下C3作物(大豆)光合适应现象相关假说"

[1] IPCC. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. pp 95-123.
[2] Still C J, Berry J A, Collatz G J, DeFries R S . Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles, 2003,17:1006.
[3] Jablonski L M, Wang X Z, Curtis P S . Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol, 2002,156:9-26.
doi: 10.1046/j.1469-8137.2002.00494.x
[4] Rogers A, Ainsworth E A, Leakey A D B . Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol, 2009,151:1009-1016.
doi: 10.1104/pp.109.144113 pmid: 19755541
[5] 韩雪, 林而达, 郝兴宇, 马占云, 王贺然 . FACE条件下冬小麦的光合适应. 中国农业气象, 2009,30:481-485.
Han X, Lin E D, Hao X Y, Ma Z Y, Wang H R . Photosynthetic acclimation of winter wheat under free air CO2 enrichment (FACE). Chin J Agrometol, 2009,30:481-485 (in Chinese with English abstract).
[6] Stitt M, Schulze D . Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ, 1994,17:465-487.
doi: 10.1111/pce.1994.17.issue-5
[7] Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M . The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA, 2008,105:17199-17204.
doi: 10.1073/pnas.0807043105 pmid: 18957552
[8] Brown M E, Funk C C. Food Security and Climate Change. Chichester: Wiley-Blackwell Press, 2018. pp 51-69.
[9] Farquhar G D, von Caemmerer S V, Berry J A . A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980,149:78-90.
doi: 10.1007/BF00386231 pmid: 24306196
[10] Zhao D L, Reddy K R, Kakani V G, Mohammed A R, Read J J, Gao W . Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. J Plant Physiol, 2004,161:581-590.
doi: 10.1078/0176-1617-01229 pmid: 15202715
[11] Long S P, Bernacchi C J . Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot, 2003,54:2393-2401.
doi: 10.1093/jxb/erg262 pmid: 14512377
[12] Liu B B, Li M, Li Q M, Cui Q Q, Zhang W D, Ai X Z, Bi H G . Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. Photosynthetica, 2018,56:942-952.
doi: 10.1007/s11099-017-0753-9
[13] Chen G Y, Yong Z H, Liao Y, Zhang D Y, Chen Y, Zhang H B, Chen J, Zhu J G, Xu D Q . Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose- 1,5-bisphosphate carboxylation limitation and ribulose- 1,5-bisphosphate regeneration limitation. Plant Cell Physiol, 2005,46:1036-1045.
doi: 10.1093/pcp/pci113 pmid: 15840641
[14] Ainsworth E A, Rogers A . The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ, 2007,30:258-270.
doi: 10.1111/j.1365-3040.2007.01641.x pmid: 17263773
[15] Biggins J. Progress in Photosynthesis Research. Berlin: Springer Science & Business Press, 1987. pp 221-224.
[16] Mott K A . Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol, 1988,86:200-203.
doi: 10.1104/pp.86.1.200 pmid: 16665866
[17] Leakey A D B, Ainsworth E A, Bernacchi C J, Rogers A, Long S P, Ort D R . Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot, 2009,60:2859-2876.
doi: 10.1093/jxb/erp096 pmid: 19401412
[18] Medlyn B E, Barton C V M, Broadmeadow M S J, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson S B, Kellomaki S, Laitat E, Rey A, Roberntz P, Sigurdsson B D, Strassemeyer J, Wang K, Curtis P S, Jarvis P G . Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol, 2001,149:247-264.
doi: 10.1046/j.1469-8137.2001.00028.x
[19] Ainsworth E A, Rogers A, Blum H, Nosberger J, Long S P . Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to Free Air CO2 Enrichment (FACE). J Exp Bot, 2003,54:2769-2774.
doi: 10.1093/jxb/erg309 pmid: 14585828
[20] Sanz-Saez A, Koester R P, Rosenthal D M, Montes C M, Ort D R, Ainsworth E A . Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration. Glob Change Biol, 2017,23:3908-3920.
doi: 10.1111/gcb.2017.23.issue-9
[21] Thomey M L, Slattery R A, Köhler I H, Bernacchi C J, Ort D R . Yield response of field-grown soybean exposed to heat waves under current and elevated [CO2]. Glob Change Biol, 2019,25:4352-4368.
doi: 10.1111/gcb.v25.12
[22] Sage R F, Monson R K. C4 Plant Biology. Amsterdam: Elsevier Press, 1999. p 87.
[23] Morgan J A, LeCain D R, Read J J, Hunt H W, Knight W G . Photosynthetic pathway and ontogeny affect water relations and the impact of CO2 on Bouteloua gracilis (C4) and Pascopyrum smithii (C3). Oecologia, 1998,114:483-493.
doi: 10.1007/s004420050472 pmid: 28307897
[24] Seneweera S P, Ghannoum O, Conroy J . High vapour pressure deficit and low soil water availability enhance shoot growth responses of a C4 grass (Panicum coloratum cv. Bambatsi) to CO2 enrichment. Funct Plant Biol, 1998,25:287-292.
doi: 10.1071/PP97054
[25] Cunniff J, Jones G, Charles M, Osborne C P . Yield responses of wild C3 and C4 crop progenitors to subambient CO2: a test for the role of CO2 limitation in the origin of agriculture. Glob Change Biol, 2017,23:380-393.
doi: 10.1111/gcb.13473
[26] Samarakoon A, Gifford R . Elevated CO2 effects on water use and growth of maize in wet and drying soil. Funct Plant Biol, 1996,23:53-62.
doi: 10.1071/PP9960053
[27] Ghannoum O, Caemmerer S V, Ziska L H, Conroy J P . The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ, 2000,23:931-942.
doi: 10.1046/j.1365-3040.2000.00609.x
[28] Maroco J P, Edwards G E, Ku M S B . Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta, 1999,210:115-125.
doi: 10.1007/s004250050660 pmid: 10592039
[29] Leakey A D, Uribelarrea M, Ainsworth E A, Naidu S L, Rogers A, Ort D R, Long S P . Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol, 2006,140:779-790.
doi: 10.1104/pp.105.073957 pmid: 16407441
[30] Zhu C, Ziska L, Zhu J, Zeng Q, Xie Z, Tang H, Jia X, Hasegawa T . The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat(Triticum aestivum) under elevated carbon dioxide. Physiol Plant, 2012,145:395-405.
doi: 10.1111/j.1399-3054.2012.01581.x pmid: 22268610
[31] Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S . New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ, 2018,41:1233-1246.
doi: 10.1111/pce.13206 pmid: 29611206
[32] Arp W . Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ, 1991,14:869-875.
doi: 10.1111/pce.1991.14.issue-8
[33] Smart D, Chatterton N, Bugbee B . The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies. Plant Cell Environ, 1994,17:435-442.
doi: 10.1111/j.1365-3040.1994.tb00312.x pmid: 11537974
[34] Moore B, Cheng S H, Sims D, Seemann J . The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ, 1999,22:567-582.
doi: 10.1046/j.1365-3040.1999.00432.x
[35] Ludewig F, Sonnewald U . High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Lett, 2000,479:19-24.
doi: 10.1016/s0014-5793(00)01873-1 pmid: 10940381
[36] Zhu C, Zhu J, Zeng Q, Liu G, Xie Z, Tang H, Cao J, Zhao X . Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation. Funct Plant Biol, 2009,36:291-299.
doi: 10.1071/FP08269 pmid: 32688647
[37] Fabre D, Dingkuhn M, Yin X, Clément-Vidal A, Roques S, Soutiras A, Luquet D . Genotypic variation in morphological source and sink traits affects the response of rice photosynthesis and growth to elevated atmospheric CO2. Biol Rxiv, 2019: 694307.
[38] Bernacchi C J, Calfapietra C, Davey P A, Wittig V E , Scarascia- Mugnozza G E, Raines C A, Long S P. Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol, 2003,159:609-621.
doi: 10.1046/j.1469-8137.2003.00850.x
[39] Davey P, Olcer H, Zakhleniuk O, Bernacchi C, Calfapietra C, Long S P, Raines C . Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell Environ, 2006,29:1235-1244.
doi: 10.1111/j.1365-3040.2006.01503.x pmid: 17080946
[40] Paul M J, Foyer C H . Sink regulation of photosynthesis. J Exp Bot, 2001,52:1383-1400.
doi: 10.1093/jexbot/52.360.1383 pmid: 11457898
[41] Aranjuelo I, Pardo A, Biel C, Savé R, Azcón-Bieto J, Nogués S . Leaf carbon management in slow-growing plants exposed to elevated CO2. Glob Change Biol, 2009,15:97-109.
doi: 10.1111/gcb.2009.15.issue-1
[42] Ainsworth E A, Rogers A, Nelson R, Long S P . Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol, 2004,122:85-94.
doi: 10.1016/j.agrformet.2003.09.002
[43] Gordon A J, Minchin F R, James C L, Komina O . Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol, 1999,120:867-878.
doi: 10.1104/pp.120.3.867 pmid: 10398723
[44] Wang T, Hedley C . Seed development in peas: knowing your three ‘r’s’ (or four, or five). Seed Sci Res, 1991,1:3-14.
doi: 10.1017/S096025850000057X
[45] 邸伟 . 大豆根瘤固氮酶活性与固氮量的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2010.
Di W . Study on Nodule Nitrogenous Activities and Amount of Nitrogen Fixation of Soybean. MS Thesis of Northeast Agricultral University, Harbin, Heilongjiang, China, 2010 (in Chinese with English abstract).
[46] Socias F X, Medrano H, Sharkey T D . Feedback limitation of photosynthesis of Phaseolus vulgaris L. grown in elevated CO2. Plant Cell Environ, 1993,16:81-86.
doi: 10.1111/pce.1993.16.issue-1
[47] Cen Y P, Sage R F . The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol, 2005,139:979-990.
doi: 10.1104/pp.105.066233 pmid: 16183840
[48] Ellis R J . The most abundant protein in the world. Trends Biochem Sci, 1979,4:241-244.
doi: 10.1016/0968-0004(79)90212-3
[49] Spreitzer R J, Salvucci M E . Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol, 2002,53:449-475.
doi: 10.1146/annurev.arplant.53.100301.135233 pmid: 12221984
[50] Drake B G, Gonzalez M A, Long S P . More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol, 1997,48:609-639.
doi: 10.1146/annurev.arplant.48.1.609 pmid: 15012276
[51] Vu J C V, Allen L H, Boote K J, Bowes G . Effects of elevated CO2 and temperature on photosynthesis and rubisco in rice and soybean. Plant Cell Environ, 1997,20:68-76.
doi: 10.1046/j.1365-3040.1997.d01-10.x
[52] Rogers A, Fischer B U, Bryant J, Frehner M, Blum H, Raines C A, Long S P . Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiol, 1998,118:683-689.
doi: 10.1104/pp.118.2.683 pmid: 9765554
[53] Yang L X, Wang Y L, Dong G C, Gu H, Huang J Y, Zhu J G, Yang H J, Liu G, Han Y . The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res, 2007,102:128-140.
doi: 10.1016/j.fcr.2007.03.006
[54] Zeng Q, Liu B A, Gilna B, Zhang Y L, Zhu C W, Ma H L, Pang J, Chen G P, Zhu J G . Elevated CO2 effects on nutrient competition between a C3 crop ( Oryza sativa L.) and a C4 weed(Echinochloa crusgalli L.). Nutr Cycl Agroecosyst, 2011,89:93-104.
doi: 10.1007/s10705-010-9379-z
[55] Uddling J, Broberg M C, Feng Z Z, Pleijel F . Crop quality under rising atmospheric CO2. Curr Opin Plant Biol, 2018,45:262-267.
doi: 10.1016/j.pbi.2018.06.001 pmid: 29958824
[56] Dong J L, Li X, Chu W Y, Duan Z Q . High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO2. Sci Hortic, 2017,218:275-283.
doi: 10.1016/j.scienta.2016.11.026
[57] Long S P, Ainsworth E A, Leakey A D, Nösberger J, Ort D R . Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 2006,312:1918-1921.
doi: 10.1126/science.1114722 pmid: 16809532
[58] Taub D R, Wang X . Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol, 2008,50:1365-1374.
doi: 10.1111/j.1744-7909.2008.00754.x
[59] Li Y S, Yu Z H, Liu X B, Mathesius U, Wang G H, Tang C X, Wu J J, Liu J D, Zhang S Q, Jin J . Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Front Plant Sci, 2017,8:1546.
doi: 10.3389/fpls.2017.01546 pmid: 28959266
[60] Li Y S, Yu Z H, Yang S C, Jin J, Wang G H, Liu C K, Herbert S J, Liu X B . Soybean intraspecific genetic variation in response to elevated CO2. Arch Agron Soil Sci, 2019,65:1733-1744.
doi: 10.1080/03650340.2019.1575958
[61] Feng Z, Rütting T, Pleijel H, Wallin G, Reich P B, Kammann C I, Newton P C, Kobayashi K, Luo Y, Uddling J . Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob Change Biol, 2015,21:3152-3168.
doi: 10.1111/gcb.12938
[62] Conroy J, Hocking P . Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations. Physiol Plant, 1993,89:570-576.
doi: 10.1111/ppl.1993.89.issue-3
[63] Field C B, Jackson R B, Mooney H A . Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ, 1995,18:1214-1225.
doi: 10.1111/pce.1995.18.issue-10
[64] Norby R J, Wullschleger S D, Gunderson C A, Johnson D W, Ceulemans R . Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ, 1999,22:683-714.
doi: 10.1046/j.1365-3040.1999.00391.x
[65] Bunce J A . Direct and acclimatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field. Glob Change Biol, 2001,7:323-331.
doi: 10.1046/j.1365-2486.2001.00406.x
[66] Stitt M, Krapp A . The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ, 1999,22:583-621.
doi: 10.1046/j.1365-3040.1999.00386.x
[67] BassiriRad H, Gutschick V P, Lussenhop J . Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia, 2001,126:305-320.
doi: 10.1007/s004420000524 pmid: 28547443
[68] Hawkesford M J, Barraclough P B. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops. Chichester: Wiley-Blackwell Press, 2011. pp 5-19.
[69] Tanner W, Beevers H . Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci USA, 2001,98:9443-9447.
doi: 10.1073/pnas.161279898 pmid: 11481499
[70] Wu K, Chen D, Tu C, Qiu Y, Burkey K O, Reberg-Horton S C, Peng S, Hu S . CO2-induced alterations in plant nitrate utilization and root exudation stimulate N2O emissions. Soil Biol Biochem, 2017,106:9-17.
doi: 10.1016/j.soilbio.2016.11.018
[71] Luo Y, Su B, Currie W S, Dukes J S, Finzi A, Hartwig U, Hungate B, McMurtrie R E, Oren R, Parton W J . Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 2004,54:731-739.
doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
[72] Cheng L, Booker F L, Tu C, Burkey K O, Zhou L, Shew H D, Rufty T W, Hu S . Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012,337:1084-1087.
doi: 10.1126/science.1224304 pmid: 22936776
[73] Niu Y, Chai R, Dong H, Wang H, Tang C, Zhang Y . Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana(L.) Heynh under different nitrogen forms. J Exp Bot, 2013,64:355-367.
doi: 10.1093/jxb/ers341 pmid: 23183255
[74] Loladze I . Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife, 2014,3.
doi: 10.7554/eLife.03606 pmid: 25535795
[75] Robinson E A, Ryan G D, Newman J A . A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol, 2012,194:321-336.
doi: 10.1111/j.1469-8137.2012.04074.x
[76] Bates P D, Stymne S, Ohlrogge J . Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol, 2013,16:358-364.
doi: 10.1016/j.pbi.2013.02.015 pmid: 23529069
[77] Li Y S, Yu Z H, Jin J, Zhang Q Y, Wang G H, Liu C K, Wu J J, Wang C, Liu X B . Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages. Front Plant Sci, 2018,9:1413.
doi: 10.3389/fpls.2018.01413 pmid: 30386351
[78] Clemente T E, Cahoon E B . Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol, 2009,151:1030-1040.
doi: 10.1104/pp.109.146282 pmid: 19783644
[79] Demorest Z L, Coffman A, Baltes N J, Stoddard T J, Clasen B M, Luo S, Retterath A, Yabandith A, Gamo M E, Bissen J, Mathis L, Voytas D F, Zhang F . Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol, 2016,16:225.
doi: 10.1186/s12870-016-0906-1 pmid: 27733139
[80] 蒋跃林, 张庆国, 岳伟, 姚玉刚, 王公明 . 大气CO2浓度升高对大豆生长和产量的影响. 中国农学通报, 2005,21:355-355.
Jiang Y L, Zhang Q G, Yue W, Yao G Y, Wang G M . Effects of elevated atmospheric CO2 concentration on growth and yield of soybean. Chin Agric Sci Bull, 2005,21:355-355 (in Chinese with English abstract).
[81] Högy P, Franzaring J, Schwadorf K, Breuer J, Schuetze W, Fangmeier A . Effects of free-air CO2 enrichment on energy traits and seed quality of oilseed rape. Agric Ecosyst Environ, 2010,139:239-244.
doi: 10.1016/j.agee.2010.08.009
[82] Myers S S, Zanobetti A, Kloog I, Huybers P, Leakey A D, Bloom A J, Carlisle E, Dietterich L H, Fitzgerald G, Hasegawa T, Holbrook N M, Nelson R L, Ottman M J, Raboy V, Sakai H, Sartor K A, Schwartz J, Seneweera S, Tausz M, Usui Y . Increasing CO2 threatens human nutrition. Nature, 2014,510:139-142.
doi: 10.1038/nature13179
[83] Soares J, Deuchande T, Valente L M, Pintado M, Vasconcelos M W . Growth and nutritional responses of bean and soybean genotypes to elevated CO2 in a controlled environment. Plants, 2019,8:465.
doi: 10.3390/plants8110465
[84] Li Y S, Yu Z H, Yang S C, Wang G H, Liu X B, Wang C Y, Xie Z H, Jin J . Impact of elevated CO2 on C : N : P ratio among soybean cultivars. Sci Total Environ, 2019,694:133784.
doi: 10.1016/j.scitotenv.2019.133784 pmid: 31756809
[85] Swaminathan S, Vaz M, Kurpad A V . Protein intakes in India. Br J Nutr, 2012,108:S50-S58.
doi: 10.1017/S0007114512002413 pmid: 23107548
[86] Pratelli R, Pilot G . Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot, 2014,65:5535-5556.
doi: 10.1093/jxb/eru320
[87] Takahashi M, Uematsu Y, Kashiwaba K, Yagasaki K, Hajika M, Matsunaga R, Komatsu K, Ishimoto M . Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta, 2003,217:577-586.
doi: 10.1007/s00425-003-1026-3 pmid: 12684787
[88] Beidler K V, Taylor B N, Strand A E, Cooper E R, Schonholz M, Pritchard S G . Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. New Phytol, 2015,205:1153-1163.
doi: 10.1111/nph.13123 pmid: 25348775
[89] World Health Organization. The World Health Report 2002: Reducing Risks, Promoting Healthy Life. France: World Health Organization, 2002. [2020-04-26]. https://www.who.int/whr/2002/en/.
[90] Brown K H, Wuehler S E, Peerson J M . The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull, 2001,22:113-125.
doi: 10.1177/156482650102200201
[91] Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, Xu X, Liu G, Seneweera S, Ebi K L, Drewnowski A . Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv, 2018, 4: eaaq1012.
doi: 10.1126/sciadv.aaq1012 pmid: 29806023
[92] Saugier B. Carbon Dioxide and Environmental Stress. Amsterdam: Elsevier Press, 1999. pp 215-244.
[93] McDonald E P, Erickson J E, Kruger E L . Can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Funct Plant Biol, 2002,29:1115-1120.
doi: 10.1071/FP02007 pmid: 32689563
[94] Pérez-López U, Miranda-Apodaca J, Mena-Petite A, Muñoz- Rueda A . Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Environ Exp Bot, 2014,99:86-99.
doi: 10.1016/j.envexpbot.2013.11.004
[95] IPCC. Global Warming of 1.5°C: an IPCC Special Report, IPCC Secretariat. Cambridge: Cambridge University Press, 2018. pp 175-311.
[96] Kim H Y, Ko J, Kang S, Tenhunen J . Impacts of climate change on paddy rice yield in a temperate climate. Glob Change Biol, 2013,19:548-562.
doi: 10.1111/gcb.2012.19.issue-2
[97] Van Oort P A, Zwart S J . Impacts of climate change on rice production in Africa and causes of simulated yield changes. Glob Change Biol, 2018,24:1029-1045.
doi: 10.1111/gcb.2018.24.issue-3
[98] Wang J, Liu X, Zhang X, Smith P, Li L, Filley T R, Cheng K, Shen M, He Y, Pan G . Size and variability of crop productivity both impacted by CO2 enrichment and warming—a case study of 4 year field experiment in a Chinese paddy. Agric Ecosyst Environ, 2016,221:40-49.
doi: 10.1016/j.agee.2016.01.028
[99] Ainsworth E A, Ort D R . How do we improve crop production in a warming world? Plant Physiol, 2010,154:526-530.
doi: 10.1104/pp.110.161349 pmid: 20921178
[100] Supit I, Van Diepen C, De Wit A, Kabat P, Baruth B, Ludwig F . Recent changes in the climatic yield potential of various crops in Europe. Agric Sys, 2010,103:683-694.
doi: 10.1016/j.agsy.2010.08.009
[101] Bassu S, Brisson N, Durand J L, Boote K, Lizaso J, Jones J W, Rosenzweig C, Ruane A C, Adam M, Baron C . How do various maize crop models vary in their responses to climate change factors? Glob Change Biol, 2014,20:2301-2320.
doi: 10.1111/gcb.2014.20.issue-7
[102] Sultan B, Gaetani M . Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Front Plant Sci, 2016,7:1262.
doi: 10.3389/fpls.2016.01262 pmid: 27625660
[103] Lobell D B, Field C B . Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett, 2007,2:014002.
doi: 10.1088/1748-9326/2/1/014002
[104] Kucharik C J, Serbin S P . Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environ Res Lett, 2008,3:034003.
doi: 10.1088/1748-9326/3/3/034003
[105] Hatfield J L, Boote K J, Kimball B, Ziska L, Izaurralde R C, Ort D, Thomson A M, Wolfe D . Climate impacts on agriculture: implications for crop production. Agron J, 2011,103:351-370.
doi: 10.2134/agronj2010.0303
[106] Ruiz-Vera U M, Siebers M, Gray S B, Drag D W, Rosenthal D M, Kimball B A, Ort D R, Bernacchi C J . Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the midwestern United States. Plant Physiol, 2013,162:410-423.
doi: 10.1104/pp.112.211938
[107] Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Müller C, Thomas A M, Rolinski S, Schaphoff S, Schmid E, Wang X H, Schlenker W, Frieler K . Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun, 2017,8:1-9.
doi: 10.1038/s41467-016-0009-6 pmid: 28232747
[108] Frenck G, van der Linden L, Mikkelsen T N, Brix H, Jørgensen R B . Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L. Eur J Agron, 2011,35:127-134.
doi: 10.1016/j.eja.2011.05.004
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[5] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[6] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[7] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[8] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[9] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[10] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[11] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[12] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[13] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[14] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[15] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!