欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (3): 530-545.doi: 10.3724/SP.J.1006.2021.03021

• 耕作栽培·生理生化 • 上一篇    下一篇

夏玉米不同部位干物质临界氮浓度稀释曲线的构建及对产量的估计

苏文楠1,2, 解君2, 韩娟1,2, 刘铁宁1,2, 韩清芳1,2,*()   

  1. 1西北农林科技大学农学院 / 农业农村部西北黄土高原作物生理生态与耕作重点实验室, 陕西杨凌 712100
    2中国旱区节水农业研究院 / 西北农林科技大学旱区农业水土工程教育部重点实验室, 陕西杨凌 712100
  • 收稿日期:2020-03-26 接受日期:2020-10-14 出版日期:2021-03-12 网络出版日期:2020-11-03
  • 通讯作者: 韩清芳
  • 作者简介:E-mail: asuwennan@163.com
  • 基金资助:
    国家高技术研究发展计划(863计划)项目(2013AA102902);国家公益性行业(农业)科研专项(201303104);国家自然科学基金项目资助(31601256)

Construction of critical nitrogen dilution curve based on dry matter in diffe rent organs of summer maize and estimation of grain yield

SU Wen-Nan1,2, XIE Jun2, HAN Juan1,2, LIU Tie-Ning1,2, HAN Qing-Fang1,2,*()   

  1. 1College of Agronomy, Northwest A & F University / Key Laboratory of Crop Physio-ecology and Tillage Science in North-western Loess Plateau, Ministry of Agriculture and Rural Affairs / College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Institute of Water Saving Agriculture in Arid Areas of China / Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2020-03-26 Accepted:2020-10-14 Published:2021-03-12 Published online:2020-11-03
  • Contact: HAN Qing-Fang
  • Supported by:
    study was supported by the National High-Tech Research and Development Programs of China “863 Program” for the 12th Five-Year Plants(2013AA102902);Special Fund for Agro-scientific Research in the Public Interest(201303104);National Natural Science Foundation of China(31601256)

摘要:

准确和动态地诊断营养生长阶段植株氮状况, 对于评估植物氮需求、预测玉米产量以及优化氮素管理至关重要。基于植物的氮诊断工具可优化夏玉米生产中氮素的管理, 本研究旨在开发和验证基于玉米地上部不同部位干物质的临界氮浓度稀释曲线, 并建立玉米相对产量(relative yield, RY)与不同生长阶段氮素营养指数(nitrogen nutrition index, NNI)和累积氮素亏缺(accumulated nitrogen deficit, AND)的关系。本文以2个不同氮效率的品种为试验材料进行连续4年的田间定位试验, 设置4个氮素水平(0、150、225和300 kg hm-2), 分析不同施氮量对2个玉米品种营养生长阶段干物质的影响, 基于叶干物质(leaf dry matter, LDM)、茎干物质(stem dry matter, SDM)和植物干物质(plant dry matter, PDM), 构建不同的临界氮浓度稀释曲线。结果表明, 基于LDM、SDM和PDM建立的临界氮浓度稀释曲线, 均能很好地诊断玉米氮营养状况; 3条临界氮浓度稀释曲线对产量进行预测比较发现, RY与NNI和AND在不同生长阶段之间的相关性均达到显著水平, 相关系数R2值均大于0.65, 其中R2值在V12-VT时期最大, 同时回归模型的验证结果表明, 在V12-VT时期模型显示出可靠性。R2值大于0.92, RMSE值小于10%, 证实了模型在V12和VT两个时期关系的稳定性。总的来说, 一定的条件下, 基于LDM和SDM建立的临界氮浓度稀释曲线可以对基于PDM建立的临界氮浓度稀释曲线进行代替。在V12-VT阶段, RY与NNI和AND的稳定关系很好地说明了在受氮素限制和非氮素限制下RY的变化, 并对夏玉米产量进行准确的估计。本研究为花前玉米的氮肥管理提高粮食产量提供理论依据。

关键词: 临界氮浓度稀释曲线, 玉米, 氮营养指数, 累积氮素亏缺

Abstract:

It is essential to accurate and dynamic diagnosis of plant nitrogen status at vegetative growth stage for the assessment of plant nitrogen demand and the prediction of crop yield as well as the optimization of nitrogen management in maize. Plant-based nitrogen diagnostic tool can be used to optimize nitrogen management in summer maize production. The aim of this study was to develop and verify critical nitrogen concentration dilution curves based on dry matter in different tissue of the plant, and to establish the relationship between relative yield (RY) nitrogen nutrition index (NNI), and accumulated nitrogen deficit (AND) at different growth stages in maize. We conducted a 4-year field study using four nitrogen application rates (0, 150, 225, and 300 kg N hm-2) and two maize cultivars (Zhengda 12 and Shaandan 609) to analyze the effects of nitrogen on dry matter at the vegetative growth stage, and based on leaf dry matter (LDM), stem dry matter (SDM), and plant dry matter (PDM), different critical nitrogen concentration dilution curves were developed. The results showed that the critical nitrogen concentration dilution curves based on LDM, SDM and PDM can well diagnose the nitrogen nutrition status of corn. The yield prediction results of three critical nitrogen concentration dilution curves showed that the relationship between RY and NNI, AND at different growth stages was highly significant, and the values of R 2 were all greater than 0.65, where R 2 was the largest at V12-VT, and the verification of the regression model showed reliable model performance during the V12-VT period, with R 2 values greater than 0.92 and RMSE values less than 10%, which confirmed the stability of the relationship between V12 and VT. Generally, under certain conditions, the critical nitrogen concentration dilution curve based on LDM and SDM can be used to replace the critical nitrogen concentration dilution curve based on PDM. The stable relationship between RY and NNI, RY and AND in V12-VT stage can well explain the change of RY under restricted and unrestricted nitrogen and estimate the yield of summer maize. This study provides the basis for nitrogen management of pre-anthesis to improve maize grain yield.

Key words: critical nitrogen dilution curve, maize, nitrogen nutrition index, accumulated nitrogen deficit

表1

2014-2017年干物质取样时期"

项目Item V3 (M/D) V6 (M/D) V8 (M/D) V12 (M/D) VT (M/D) R6 (M/D)
2014 6/27 7/12 7/17 7/30 8/13 10/14
2015 6/29 7/15 7/20 8/2 8/17 10/15
2016 7/1 7/14 7/21 7/31 8/15 10/3
2017 6/29 7/13 7/21 8/4 8/13 10/14

表2

2014-2017年正大12和陕单609的氮效率"

施氮量
Nitrogen rate
品种
Cultivar
氮肥偏生产力
Partial factor productivity nitrogen
(PFPN, kg kg-1)
氮肥回收效率
Recovery efficiency of nitrogen
(REN, %)
氮素利用效率
Nitrogen utilization efficiency
(NutE, kg kg-1)
氮素吸收效率
Nitrogen uptake efficiency
(NupE, kg kg-1)
2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017
N0 ZD 79.1 a 78.4 a 71.0 a 72.6 a 69.5 a 76.6 a 79.9 a 98.0 a
SD 73.0 b 69.9 b 61.2 b 63.3 b 62.1 b 64.6 b 66.8 b 76.9 b
N150 ZD 62.7 a 67.9 a 64.9 a 70.1 a 36.2 a 44.9 a 45.3 a 39.5 a 60.9 a 59.0 a 51.4 a 57.6 a 35.6 a 36.9 a 37.3 a 40.4 a
SD 54.3 b 55.4 b 56.9 b 58.3 b 29.8 b 36.6 b 34.4 b 39.3 a 57.6 b 52.7 b 49.2 b 49.1 b 30.8 b 30.1 b 31.7 b 32.0 b
N225 ZD 46.7 a 49.2 a 50.8 a 50.8 a 40.7 a 43.5 a 38.0 a 39.3 a 54.9 a 54.5 a 54.9 a 53.9 a 30.7 a 30.3 a 30.5 a 24.3 a
SD 39.7 b 40.8 b 43.5 b 44.3 b 38.1 b 36.9 b 34.4 b 37.7 a 48.9 b 49.5 b 49.0 b 48.9 b 26.1 b 25.2 b 25.7 b 20.7 b
N300 ZD 34.0 a 35.7 a 37.6 a 36.7 a 35.4 a 35.9 a 37.0 a 32.6 a 49.4 a 50.2 a 48.2 a 49.8 a 24.4 a 23.7 a 24.5 a 18.4 a
SD 30.3 b 30.8 b 32.4 b 32.8 b 34.7 a 34.2 a 32.6 b 34.2 a 45.3 a 45.1 b 44.2 b 44.3 b 21.8 b 20.5 b 20.8 b 15.6 b
方差分析 品种Cultivar (C) ** ** ** ** ** ** ** ns ** ** ** ** ** ** ** **
ANOVA 氮肥Nitrogen rate (N) ** ** ** ** ** ** ns ns ** ** ** ** ** ** ** **
品种×氮肥C×N ** ** ns ** ns ** ns ns * ** ns ** ns ** ** **

图1

基于叶片、茎和植株干物质建立的2个玉米品种临界氮浓度稀释曲线的差异比较 SD: 陕单609; ZD: 正大12; Nc: 地上部氮浓度的临界值; LDM: 叶片干物质; SDM: 茎干物质; PDM: 植株干物质。“○”表示品种陕单609, “●”表示品种正大12; “──”表示品种陕单609, “- - -”表示品种正大12。** 表示在P < 0.01水平上显著。"

表3

临界氮浓度稀释曲线的验证"

参数
Parameter
正大12 Zhengda 12 陕单609 Shaandan 609
RMSE n-RMSE RMSE n-RMSE
叶片Leaf 0.043 1.799 0.032 1.354
茎Stem 0.192 16.733 0.048 3.549
植株Plant 0.148 9.135 0.088 4.996

图2

用2016-2017年获得的数据验证Nc稀释曲线 符号(○)和(×)分别代表2016年和2017年的不受氮素限制值和受氮素限制值。a、b和c实线分别代表陕单609的叶片、茎和植株的Nc稀释曲线, d、e和f实线分别代表正大12的叶片、茎和植株的Nc稀释曲线。两侧的虚线代表最小和最大的曲线, 用2014-2015年不受氮素限制值(△)和受氮素限制值(◇)获得。Nmin和Nmax为氮浓度最小和最大值; LDM: 叶片干物质; SDM: 茎干物质; PDM: 植株干物质。** 表示在P < 0.01水平上显著。"

图3

基于叶片干物质建立的临界氮浓度曲线得到的RY与NNI和AND的关系 V3、V6、V8、V12、VT和R6分别代表玉米的三叶期、六叶期(拔节期)、八叶期、十二叶期(大喇叭口期)、抽雄期和完熟期。SD: 陕单609; ZD: 正大12; “△”表示品种陕单609, “◇”表示品种正大12; “──”表示品种陕单609, “……”表示品种正大12。** 表示在P < 0.01水平上显著。"

图4

基于茎干物质建立的临界氮浓度曲线得到的RY与NNI和AND的关系 缩写和符号同图3。** 表示在P < 0.01水平上显著。"

图5

基于植株干物质建立的临界氮浓度曲线得到的RY与NNI和AND的关系 缩写和符号同图3。** 表示在P < 0.01水平上显著。"

表4

相对籽粒产量(RY)的RMSE, n-RMSE和R2的值(根据2016-2017年不同时期的氮营养指数(NNI)和累积氮亏(AND)预测)"

部位
Organ or plant
品种
Cultivar
参数
Parameter
氮亏缺Accumulated nitrogen deficit (AND) 氮营养指数Nitrogen nutrition index (NNI)
V3 V6 V8 V12 VT V3 V6 V8 V12 VT
叶片
Leaf
正大12 RMSE 0.08 0.08 0.09 0.03 0.05 0.08 0.12 0.08 0.05 0.05
Zhengda 12 n-RMSE 9.10 9.04 10.41 3.51 5.23 8.85 13.65 8.39 5.72 5.31
R2 0.90 0.89 0.86 0.98 0.96 0.90 0.76 0.91 0.95 0.96
陕单609 RMSE 0.11 0.06 0.08 0.05 0.05 0.08 0.07 0.07 0.03 0.05
Shaandan 609 n-RMSE 12.40 6.86 8.69 5.81 5.40 8.80 8.12 7.90 2.82 5.11
R2 0.83 0.93 0.88 0.95 0.95 0.88 0.90 0.90 0.98 0.96

Stem
正大12 RMSE 0.11 0.10 0.10 0.06 0.06 0.08 0.10 0.06 0.06 0.06
Zhengda 12 n-RMSE 11.83 10.66 10.96 7.16 6.67 8.81 11.40 6.46 6.79 6.49
R2 0.83 0.85 0.84 0.93 0.94 0.90 0.82 0.94 0.94 0.94
陕单609 RMSE 0.10 0.10 0.06 0.04 0.04 0.06 0.08 0.05 0.04 0.03
Shaandan 609 n-RMSE 11.00 11.12 6.35 3.92 4.18 6.46 9.14 5.57 4.74 3.16
R2 0.87 0.81 0.94 0.97 0.97 0.93 0.87 0.95 0.96 0.98
植株
Plant
正大12 RMSE 0.15 0.09 0.07 0.06 0.04 0.10 0.09 0.06 0.06 0.04
Zhengda 12 n-RMSE 17.09 9.87 7.81 6.11 4.63 10.70 9.97 7.03 6.57 4.38
R2 0.65 0.88 0.92 0.95 0.97 0.86 0.88 0.94 0.94 0.97
陕单609 RMSE 0.12 0.10 0.08 0.04 0.07 0.08 0.09 0.04 0.03 0.04
Shaandan 609 n-RMSE 13.47 11.25 8.32 4.65 7.85 9.24 9.42 4.91 3.03 4.93
R2 0.80 0.86 0.92 0.97 0.93 0.91 0.90 0.97 0.99 0.97

表5

V12和VT时期氮营养指数(NNI)和累积氮亏缺(AND)的相对产量(RY)的预测模型(根据4年试验数据估算)"

处理
Treatment
生育时期
Growth stage
R2 回归方程
Regression equation (RY-AND)
R2 回归方程
Regression equation (RY-NNI)
ZD leaf V12 0.94 RY = 1.081-0.026AND if AND > 3.5 and RY = 0.99 AND ≤ 3.5 0.96 RY = -0.01+NNI if NNI<0.95 and RY = 0.99 NNI ≥ 0.95
VT 0.95 RY = 1.138-0.028AND if AND > 5.3 and RY = 0.99 AND ≤ 5.3 0.96 RY = -0.033+1.1NNI if NNI<0.93 and RY = 0.99 NNI ≥ 0.93
SD leaf V12 0.98 RY = 1.010-0.019AND if AND > 0.5 and RY = 1 AND ≤ 0.5 0.98 RY = 0.284+0.688NNI if NNI<1.04 and RY = 1 NNI ≥ 1.04
VT 0.98 RY = 0.997-0.017AND if AND > 0.4 and RY = 0.99 AND ≤ 0.4 0.98 RY = 0.271+0.705NNI if NNI<1.02 and RY = 0.99 NNI ≥ 1.02
ZD stem V12 0.97 RY = 1.079-0.023AND if AND > 3.6 and RY = 0.99 AND ≤ 3.6 0.97 RY = 0.418+0.615NNI if NNI<0.93 and RY = 0.99 NNI ≥ 0.93
VT 0.98 RY = 1.182-0.024AND if AND > 8 and RY = 0.99 AND ≤ 8 0.98 RY = 0.414+0.678NNI if NNI<0.85 and RY = 0.99 NNI ≥ 0.85
SD stem V12 0.98 RY = 1.014-0.016AND if AND > 1.5 and RY = 0.99 AND ≤ 1.5 0.98 RY = 0.494+0.506NNI if NNI<1 and RY = 1 NNI ≥ 1
VT 0.98 RY = 1.006-0.01AND if AND > 1.6 and RY = 0.99 AND ≤ 1.6 0.99 RY = 0.565+0.405NNI if NNI < 1.05 and RY = 0.99 NNI ≥ 1.05
ZD plant V12 0.97 RY = 1.148-0.015AND if AND > 10.5 and RY = 0.99 AND ≤ 10.5 0.97 RY = 0.188+0.881NNI if NNI < 0.91 and RY = 0.99 NNI ≥ 0.91
VT 0.98 RY = 1.072-0.01AND if AND > 8.2 and RY = 0.99 AND ≤ 8.2 0.98 RY = 0.139+0.886NNI if NNI < 0.96 and RY = 0.99 NNI ≥ 0.96
SD plant V12 0.98 RY = 1.048-0.01AND if AND > 4.8 and RY = 1 AND ≤ 4.8 0.99 RY = 0.351+0.669NNI if NNI < 0.97 and RY = 1 NNI ≥ 0.97
VT 0.98 RY = 1.013-0.005AND if AND > -4.6 and RY = 0.99 AND ≤ -4.6 0.98 RY = 0.412+0.556NNI if NNI < 1.06 and RY = 1 NNI ≥ 1.06

表6

基于不同部位建立的临界氮浓度稀释曲线与其他模型参数的比较"

部位
Organ
作物
Crop
地点
Site
a b 参考文献
Reference
植株 玉米Maize 关中平原Guanzhong Plain 2.25 0.27 Li Z P et al.[29]
Plant 黄淮海平原Huanghuaihai Plain 3.34 0.396 Liang X G et al.[38]
华北平原North China Plain 2.72 0.27 Yue S C et al.[37]
本试验This study 2.47 0.24
2.33 0.26
叶片 玉米Maize 黄淮海平原Huanghuaihai Plain 3.45 0.22 Zhao B et al.[10]
Leaf 水稻Rice 长江中下游平原the Middle-Lower Yangtze Plains 3.76 0.22 Wang X L[44]
小麦Wheat 长江中下游平原the Middle-Lower Yangtze Plains 3.06 0.15 Yao X et al.[23]
关中平原Guanzhong Plain 3.96 0.14 Qiang S C et al.[45]
本试验This study 2.64 0.20
2.61 0.21
小麦Wheat 长江中下游平原the Middle-Lower Yangtze Plains 2.50 0.44 Wang X L [44]
Stem 水稻Rice 长江中下游平原the Middle-Lower Yangtze Plains 2.26 0.32 Ata-Ul-Karim S T et al.[22]
本试验This study 1.58 0.39
1.83 0.34
[1] Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat Geosci, 2008,1:636-639.
[2] 王西娜, 王朝辉, 李生秀. 施氮量对夏季玉米产量及土壤水氮动态的影响. 生态学报, 2007,27(1):197-204.
Wang X N, Wang Z H, Li S X. The effect of nitrogen fertilizer rate on summer maize yield and soil water nitrogen dynamics. Acta Ecol Sin, 2007,27(1):197-204 (in Chinese with English abstract).
[3] Ramanantenasoa M M J, Génermont S, Gilliot J M, Makowski D. Metamodeling methods for estimating ammonia volatilization from nitrogen fertilizer and manure applications. J Environ Manag, 2019,236:195-205.
[4] Galloway J N, Cowling E B. Reactive nitrogen and the world: 200 years of change. Ambio, 2002,3:64-71.
[5] 宁芳, 张元红, 温鹏飞, 王瑞, 王倩, 董朝阳, 贾广灿, 李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应. 作物学报, 2019,45:777-791.
Ning F, Zhang Y H, Wen P F, Wang R, Wang Q, Dong Z Y, Jia G C, Li J. Responses of maize growth and yield to nitrogen application in dryland under different precipitation conditions. Acta Agron Sin, 2019,45:777-791 (in Chinese with English abstract).
[6] Zhao B, Ata-Ul-Karim S T, Liu Z D, Zhang J Y, Xiao J F, Liu Z G, Qin A Z, Ning D F, Yang Q X, Zhang Y H, Duan A W. Simple assessment of nitrogen nutrition index in summer maize by using chlorophyll meter readings. Front Plant Sci, 2018,9:11.
doi: 10.3389/fpls.2018.00011 pmid: 29403521
[7] Zhao B, Liu Z D, Ata-Ul-Karim S T, Xiao J F, Liu Z G, Qi A Z, Ning D F, Nan J Q, Duan A W. Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field Crops Res, 2016,185:59-68.
[8] Justes E, Mary B, Meynard J M, Machet J M, Thelier-Huche L. Determination of A critical nitrogen dilution curve for winter-wheat Crops. Ann Bot, 1994,74:397-407.
[9] Ata-Ul-Karim S T, Yao X, Liu X J, Cao W X, Zhu Y. Development of critical nitrogen dilution curve ofjaponica rice in Yangtze River Reaches. Field Crops Res, 2013,149:149-158.
[10] Zhao B, Ata-Ul-Karim S T, Liu Z, Ning D F, Xiao J F, Liu Z G, Qin A Z, Nan J Q, Duan A W. Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Res, 2017,208:60-68.
[11] Wang X L, Ye T Y, Ata-Ul-Karim S T, Zhu Y, Liu L L, Cao W X, Tang L. Development of a critical nitrogen dilution curve based on leaf area duration in wheat. Front Plant Sci, 2017,8:1517.
pmid: 28928757
[12] 付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020,46:290-299.
Fu J P, He Z, Jia B, Liu H F, Li Z Z, Liu Z. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation. Acta Agron Sin, 2020,46:290-299 (in Chinese with English abstract).
[13] Ata-Ul-Karim S T, Liu X J, Lu Z Z, Yuan Z F, Zhu Y, Cao W X. In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res, 2016,195:1-8.
[14] Ata-Ul-Karim S T, Liu X J, Lu Z Z, Zheng H B, Cao W X, Zhu Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Res, 2017,201:32-40.
[15] 岳松华, 刘春雨, 黄玉芳, 叶优良. 豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立. 作物学报, 2016,42:909-916.
Yue S H, Liu C Y, Huang Y F, Ye Y L. Simulating critical nitrogen dilution curve and modeling nitrogen nutrition index in winter wheat in central Henan area. Acta Agron Sin, 2016,42:909-916 (in Chinese with English abstract).
[16] Yao Y K, Miao Y X, Cao Q, Wang H Y, Gnyp M L, Bareth G, Khosla R, Yang W, Liu F Y, Liu C. In-season estimation of rice nitrogen status with an active crop canopy sensor. IEEE J-Stars, 2014,7:4403-4413.
[17] Ziadi N, Bélanger G, Claessens A, Lefebvre L, Cambouris A N, Tremblay N, Nolin M C, Parent L E. Determination of a critical nitrogen dilution curve for spring wheat. Agron J, 2010,102:241-250.
[18] Lemaire G, Jeuffroy M H, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur J Agron, 2008,28:614-624.
[19] Zhang K, Yuan Z F, Yang T C, Lu Z Z, Cao Q, Tian Y C, Zhu Y, Cao W X, Liu X J. Chlorophyll meter-based nitrogen fertilizer optimization algorithm and nitrogen nutrition index for in-season fertilization of paddy rice. Agron J, 2020,112:1-13.
[20] Ziadi N, Brassard M, Bélanger G, Claessens A, Tremblay N, Cambouris A, Nolin M, Parent L E. Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron J, 2008,100:271-273.
[21] Ata-Ul-Karim S T, Yao X, Liu X J, Cao W X, Zhu Y. Determination of critical nitrogen dilution curve based on stem dry matter in rice. PLoS One, 2014,9:e104540.
doi: 10.1371/journal.pone.0104540 pmid: 25127042
[22] Ata-Ul-Karim S T, Zhu Y, Liu X J, Cao Q, Tian Y C, Cao W X. Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Sci Rep, 2017,7:42679.
doi: 10.1038/srep42679 pmid: 28262685
[23] Yao X, Zhao B, Tian Y C, Liu X J, Ni J, Cao W X, Zhu Y. Using leaf dry matter to quantify the critical nitrogen dilution curve for winter wheat cultivated in eastern China. Field Crops Res, 2014,159:33-42.
[24] Huang S Y, Miao Y X, Cao Q, Yao Y K, Zhao G M, Yu W F, Shen J N, Yu K, Bareth G. A new critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere, 2018,28:814-822.
[25] Zhao B, Yao X, Tian Y C, Liu X J, Ata-Ul-Karim S T, Ni J, Cao W X, Zhu Y. New critical nitrogen curve based on leaf area index for winter wheat. Agron J, 2014,106:379-383.
[26] Zhao B, Ata-Ui-Karim S T, Yao X, Tian Y C, Cao W X, Zhu Y Liu X J. A new curve of critical nitrogen concentration based on spike dry matter for winter wheat in Eastern China. PLoS One, 2016,11:e164545.
[27] Zhao Z G, Wang E L, Wang Z M, Zang H Z, Liu Y P, Angus J F. A reappraisal of the critical nitrogen concentration of wheat and its implications on crop modeling. Field Crops Res, 2014,164:65-73.
[28] 强生才, 张富仓, 向友珍, 张燕, 闫世程, 邢英英. 关中平原不同降雨年型夏玉米临界氮稀释曲线模拟及验证. 农业工程学报, 2015,31(17):168-175.
Qiang S C, Zhang F C, Xiang Y Z, Zhang Y, Yan S C, Xing Y Y. Simulation and validation of critical nitrogen dilution curve for summer maize in Guanzhong Plain during different rainfall years. Trans CSAE, 2015,31(17):168-175 (in Chinese with English abstract).
[29] 李正鹏, 冯浩, 宋明丹. 关中平原冬小麦临界氮浓度稀释曲线和氮营养指数研究. 农业机械学报, 2015,46(10):177-183.
Li Z P, Feng H, Song M D. Development and validation of critical nitrogen content curve for maize in Guanzhong area. Trans CSAM, 2015,46(10):135-141 (in Chinese with English abstract).
[30] Bremner J M, Mulvancy C S. Nitrogen-total. In: Page A L, Miller R H, Keeney D R, eds. Methods of Soil Analysis. Madison: American Society of Agronomy, 1982. pp 595-624.
[31] Yang J, Greenwood D J, Rowell D L, Wadsworth G A, Burns I G. Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE. Agric Syst, 2000,64:37-53.
[32] Jamieson P D, Porter J R, Wilson D R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res, 1991,27:337-350.
[33] He Z Y, Qiu X L, Ata-Ul-Karim S T, Li Y D, Liu X J, Cao Q, Zhu Y, Cao W X, Tang L. Development of a critical nitrogen dilution curve of double cropping rice in south China. Front Plant Sci, 2017,8:638.
doi: 10.3389/fpls.2017.00638 pmid: 28503181
[34] Zhao B, Niu X L, Ata-Ul-Karim S T, Wang L G, Duan A W, Liu Z D, Lemaire G. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. Eur J Agron, 2020,113:125967.
[35] Song L G, Wang S, Ye W J. Establishment and application of critical nitrogen dilution curve for rice based on leaf dry matter. Agron J, 2020,10:367.
[36] 梁效贵, 张经廷, 周丽丽, 李旭辉, 周顺利. 华北地区夏玉米临界氮稀释曲线和氮营养指数研究. 作物学报, 2013,39:292-299.
Liang X G, Zhang J T, Zhou L L, Li X H, Zhou S L. Critical nitrogen dilution curve and nitrogen nutrition index for summer maize in north China plain. Acta Agron Sin, 2013,39:292-299 (in Chinese with English abstract).
[37] Yue S C, Sun F L, Meng Q F, Zhao R F, Li F, Chen X P, Zhang F S, Cui Z L. Validation of a critical nitrogen curve for summer maize in the North China Plain. Pedosphere, 2014,24:76-83.
[38] Liang X G, Zhang Z L, Zhou L L, Shen S, Gao Z, Zhang L, Lin S, Pan Y Q, Zhou S L. Localization of maize critical N curve and estimation of NNI by Chlorophyll. Int J Plant Prod, 2018,12:85-94.
[39] Novoa R, Loomis R. Nitrogen and plant production. Plant Soil, 1981,58:177-204.
[40] 侯有良, Brien L O, 钟改荣. 小麦不同器官氮素累积分布动态规律的研究. 作物学报, 2001,27:493-499.
Hou Y L, Brien L O, Zhong G R. Study on the dynamic change of the distribution and accumulation of nitrogen in different plant parts of wheat. Acta Agron Sin, 2001,27:493-499 (in Chinese with English abstract).
[41] Sinclair T R, Horie T. Leaf nitrogen, photosynthesis and crop radiation use efficiency: a review. Crop Sci, 1989,29:90-98.
[42] 安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良. 植物营养与肥料学报, 2019,25:123-133.
An Z C, Huang Y F, Wang Y, Zhao Y N, Yue S H, Shi H B, Ye Y L. Critical nitrogen concentration dilution model and nitrogen nutrition diagnosis in summer maize with different nitrogen efficiencies. J Plant Nutr Fert, 2019,25:123-133 (in Chinese with English abstract).
[43] Chen Y L, Xiao C X, Chen X C, Li Q, Zhang J, Chen F J, Yuan L X, Mi G H. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crops Res, 2014,159:1-9.
[44] 王晓玲. 长江中下游稻麦两熟区冬小麦植株器官临界氮浓度模型构建及氮素诊断调控研究. 南京农业大学博士学位论文, 江苏南京, 2017.
Wang X L. Study on Construction Critical Nitrogen Concentration Dilution Models Based on Plant Organs and Diagnosis and Regulation of Wheat in the Middle and Lower Reaches of the Yangtze River. PhD Dissertation of Graduate School of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract).
[45] 强生才, 张富仓, 田建柯, 吴悠, 闫世程, 范军亮. 基于叶片干物质的冬小麦临界氮浓度稀释曲线模拟研究. 农业机械学报, 2015,46(11):121-128.
Qiang S C, Zhang F C, Tian J K, Wu Y, Yan S C, Fan J L. Deve lopment of critical nitrogen dilution curve in winter wheat based on leaf dry matter. Trans CSAM, 2015,46(11):121-128 (in Chinese with English abstract).
[46] Stockle C O, Debaeke P. Modeling crop nitrogen requirements: a critical analysis. Eur J Agron, 1997,7:161-169.
[47] 刘朋召, 师祖姣, 宁芳, 王瑞, 王小利, 李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断. 作物学报, 2020,46:1225-1237.
Liu P Z, Shi Z J, Ning F, Wang R, Wang X L, Li J. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland. Acta Agron Sin, 2020,46:1225-1237 (in Chinese with English abstract).
[48] Yuan Z F, Ata-Ul-Karim S T, Cao Q, Lu Z Z, Cao W X, Zhu Y, Liu X J. Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Res, 2016,185:12-20.
[49] Zhao B, Duan A W, Ata-Ul-Karim S T, Liu Z D, Chen Z F, Gong Z H, Zhang J Y, Xiao J F, Liu Z G, Qin A Z, Ning D F. Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. Eur J Agron, 2018,93:113-125.
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!