欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 929-941.doi: 10.3724/SP.J.1006.2021.01047

• 耕作栽培·生理生化 • 上一篇    下一篇

间作小麦光合性能对地上地下互作强度的响应

王一帆(), 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强*()   

  1. 甘肃省干旱生境作物学重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2020-06-08 接受日期:2020-11-13 出版日期:2021-05-12 网络出版日期:2020-12-22
  • 通讯作者: 柴强
  • 作者简介:E-mail: wangyf@gsau.edu.cn
  • 基金资助:
    国家自然科学基金项目(31771738);甘肃农业大学伏羲青年人才培育项目(Gaufx-03Y10)

Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground

WANG Yi-Fan(), YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang*()   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-06-08 Accepted:2020-11-13 Published:2021-05-12 Published online:2020-12-22
  • Contact: CHAI Qiang
  • Supported by:
    National Natural Science Foundation of China(31771738);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10)

摘要:

本研究旨在探讨地上地下互作强度对间作小麦光合性能的影响, 为进一步揭示间作体系作物产量优势的光合机制提供依据。2015—2017年连续3年在河西绿洲灌区进行田间试验, 以小麦间作玉米为研究对象, 设置地下部3种互作强度: 根系不分隔(完全地下互作处理, W/M)、300目尼龙网分隔(部分地下互作处理, NW/M)和0.12 mm塑料布分隔(无地下互作处理, PW/M), 以及地上部高、低玉米密度(M1、M2) 2种互作强度, 同时设置相应单作处理。结果表明, 小麦间作玉米共生前期和后期完全地下互作处理促使小麦净光合速率(Pn)显著提高, 且共生后期玉米密度的提高促使完全地下互作效应增强, 进一步提高了小麦Pn。小麦间作玉米共生前、中和后期, 完全地下互作处理可显著提高小麦叶片气孔导度(Gs)、胞间CO2浓度(Ci), 且玉米密度提高对共生前期完全地下互作处理和部分地下互作处理小麦Gs的增加起到促进作用。在共生前期、后期完全地下互作和部分地下互作处理保持了较低的Tr。间作完全地下互作处理有助于小麦叶日积(LAD)的增加, 且随着生育进程的推进, 提高比率越大。完全地下互作处理使共生中期间作小麦叶片相对叶绿素含量值(SPAD)显著增加, 有利于光合强度的提高。间作小麦具有显著的增产效应, 完全地下互作处理中小麦籽粒产量达到相应单作产量的76.8%, 具有显著提高间作群体籽粒产量的优势, 且地上部互作强度增强有利于完全地下互作处理正效应的发挥。地上地下互作强度是影响间作小麦光合性能的重要因素之一, 在生产实践中可通过调节地上地下互作强度的强弱来优化低位作物光合性能。

关键词: 间作, 地上地下互作强度, 小麦, 光合性能, 产量

Abstract:

The purpose of this study is to explore the effects of above-ground and underground interaction intensity of intercropped population on the photosynthetic performance of intercropped wheat and to provide a basis for further revealing the photosynthetic mechanism of crop yield advantage in intercropping system. From 2015 to 2017 wheat intercropping with maize was taken as the research object. Three root separation methods were designed: no root separation (complete below-ground interaction treatment, W/M), 300 mesh nylon net separation (partial below-ground interaction treatment, NW/M), 0.12 mm plastic cloth separation (no below-ground interaction treatment, PW/M), and tow level maize densities. Meanwhile, the corresponding monocluture was carried out. The results showed that the Pn of intercropped wheat was significantly increased by the complete below-ground interaction treatment during per-symbiotic period and late symbiotic period of wheat/maize intercropping, with the increase of maize density the Pn of wheat increased during late symbiotic period. During per-symbiotic period, mid-symbiotic period and late symbiotic period of wheat/maize intercropping, the complete below-ground interaction treatment can significantly improve the Gs, Ci of intercropped wheat. The increase of maize density can promote the increase of Gs in the complete below-ground interaction treatment and partial below-ground interaction treatment during per-symbiotic period. The Tr of leaves was higher during mid-symbiotic period and late symbiotic period of wheat/maize intercropping without below-ground interaction treatment, while the Tr of leaves remained lower in both stages of complete below-ground interaction and partial below-ground interaction. Complete below-ground interaction treatment was helpful to increase the daily leaf area (LAD) in wheat, with the development of growth process, the increase ratio was larger. Complete belowground interaction treatment significantly increased the SPAD of leaves during mid-symbiotic period, which was beneficial to increase photosynthetic intensity. Intercropped wheat had significant yield-increasing effect. The grain yield of wheat under complete below-ground interaction treatment reached 76.8% of the corresponding single-cropped, which had the advantage of significantly increasing the grain yield of intercropping population. Moreover, the enhancement of above-ground interaction intensity was conducive to the positive effect of complete below-ground interaction treatment. The intensity of above- and below-ground interaction was one of the important factors affecting the photosynthetic characteristics of intercropped wheat.

Key words: intercropping, above- and below-ground interaction intensity, wheat, photosynthetic performance, yield

图1

小麦间作玉米隔根示意图 两种作物带宽均为80 cm, 玉米种2行(行距40 cm), 小麦种6行(行距12 cm), 3种隔根方式为不隔根、尼龙网隔根和塑料布隔根, 试验开始前, 在间作两种作物中间开沟, 将隔根材料垂直隔至土壤100 cm处。"

图2

不同地上地下互作强度下间作小麦净光合速率时间动态 W: 单作小麦; M1: 低密度单作玉米; M2: 高密度单作玉米; N: 尼龙网隔根; P: 塑料布隔根。误差线为标准误差。"

图3

不同地上地下互作强度下间作小麦气孔导度时间动态 W: 单作小麦; M1: 低密度单作玉米; M2: 高密度单作玉米; N: 尼龙网隔根; P: 塑料布隔根。误差线为标准误差。"

图4

不同地上地下互作强度下间作小麦胞间CO2浓度的时间动态 W: 单作小麦; M1: 低密度单作玉米; M2: 高密度单作玉米; N: 尼龙网隔根; P: 塑料布隔根。误差线为标准误差。"

图5

不同地上地下互作强度下间作小麦蒸腾速率的时间动态 W: 单作小麦; M1: 低密度单作玉米; M2: 高密度单作玉米; N: 尼龙网隔根; P: 塑料布隔根。误差线为标准误差。"

图6

不同地上地下互作强度下间作小麦相对叶绿素值的时间动态 W: 单作小麦; M1: 低密度单作玉米; M2: 高密度单作玉米; N: 尼龙网隔根; P: 塑料布隔根。误差线为标准误差。其上所标不同字母表示处理间差异显著(P < 0.05)。"

表1

不同地上地下互作强度下间作小麦不同时期的叶日积"

年份
Year
处理
Treatment
小麦间作玉米共生前期
Per-symbiotic period
小麦间作玉米共生中期
Mid-symbiotic period
小麦间作玉米共生后期
Late symbiotic period
2015 W 71.3 ab 84.9 c 55.7 cd
W/M1 75.4 a 119.2 a 76.3 a
W/M2 78.6 a 109.7 a 74.3 a
NW/M1 69.2 b 102.3 b 68.9 b
NW/M2 70.0 b 97.4 b 69.1 b
PW/M1 61.8 c 88.2 c 58.3 c
PW/M2 65.0 bc 81.9 c 52.9 d
2016 W 68.9 b 87.8 cd 55.3 d
W/M1 76.0 a 109.7 a 77.8 a
W/M2 76.4 a 105.3 ab 70.4 b
NW/M1 71.2 b 100.4 b 66.3 c
NW/M2 71.4 b 97.4 b 65.2 c
PW/M1 62.8 c 89.4 c 55.8 d
PW/M2 64.1 c 83.6 d 57.9 d
2017 W 72.8 b 88.3 b 57.6 c
W/M1 77.0 a 105.4 a 70.4 a
W/M2 76.8 a 98.7 a 72.3 a
NW/M1 65.4 c 89.3 b 66.1 b
NW/M2 70.1 b 88.8 b 60.4 b
PW/M1 59.8 d 80.2 bc 53.9 d
PW/M2 61.8 c 77.9 c 50.4 d
显著性 Significant
年际 Year (Y) NS NS NS
种植模式 Planting pattern (P) ** ** **
地下互作强度 Below-ground interaction (I) ** ** **
密度 Density (D) NS NS NS
I×D NS NS NS

表2

不同地上地下互作强度下间作小麦籽粒产量及群体籽粒产量"

处理
Treatment
2015 2016 2017
小麦
Wheat
总和
Total
土地当量比LER 小麦
Wheat
总和
Total
土地当量比LER 小麦
Wheat
总和
Total
土地当量比LER
W 6070 a 6070 f 6313 a 6313 f 6182 a 6182 e
W/M1 4434 b 13,584 b 1.44 b 5327 b 15,781 bc 1.68 a 4697 c 15,279 b 1.59 a
W/M2 4514 b 15,322 a 1.53 a 5400 b 17,203 a 1.63 a 4942 b 16,641 a 1.59 a
NW/M1 4002 c 12,761 c 1.34 c 5026 c 14,926 d 1.60 a 4422 d 13,326 de 1.41 b
NW/M2 3917 c 13,769 b 1.36 b 4876 cd 16,271 b 1.52 b 4153 e 13,959 d 1.34 b
PW/M1 3451 d 11,600 e 1.20 d 4718 d 12,722 e 1.40 c 3700 f 11,859 f 1.15 c
PW/M2 3609 d 12,045 d 1.21 d 4475 e 13,626 c 1.30 d 3626 f 11,860 f 1.24 c
显著性 Significant
年际 Year (Y) NS NS NS
种植模式 Planting pattern (P) ** ** ** ** ** **
密度 Density (D) NS ** ** ** ** ** * ** NS
地下作用强度
Below-ground interaction (I)
** ** ** * ** ** ** ** **
I×D NS ** ** NS NS ** * NS **

图7

不同地上地下互作强度下间作小麦收获指数 W: 单作小麦; M1: 低密度单作玉米; M2: 高密度单作玉米; N: 尼龙网隔根; P: 塑料布隔根。误差线为标准误差。其上所标不同字母表示处理间差异显著(P < 0.05)。"

表3

籽粒产量与净光合速率、气孔导度、胞间CO2浓度、蒸腾速率、相对叶绿素值、叶日积的相关关系"

项目
Item
指标
Index
小麦间作玉米共生前期
Pre-symbiotic period
小麦间作玉米共生中期
Mid-symbiotic period
小麦间作玉米共生后期
Late symbiotic period
总产量
Total yield
Pn 0.18 -0.26 0.13
Gs 0.53* 0.20 -0.27
Ci 0.34 0.45* 0.57**
Tr -0.39 -0.43 0.11
SPAD -0.17 0.59** 0.50*
LAD 0.42 0.52* 0.64**
小麦产量
Wheat yield
Pn 0.11 -0.23 0.51*
Gs 0.00 -0.32 -0.05
Ci 0.09 0.17 0.19
Tr 0.46* 0.13 -0.61**
SPAD 0.85** -0.17 0.06
LAD 0.52* 0.27 0.21
[1] Yin W, Chai Q, Guo Y, Feng F X, Zhao C, Yu A Z, Hu F L. Analysis of leaf area index dynamic and grain yield components of intercropped wheat and maize under straw mulch combined with reduced tillage in arid environments. J Agric Sci, 2016,8:26.
[2] Hu F L, Gan Y T, Chai Q, Feng F X, Zhao C, Yu A Z, Mu Y P, Zhang Y. Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. Field Crops Res, 2016,198:50-60.
[3] Watiki J M, Fukai S, Banda J A, Keating B A. Radiation interception and growth of maize/cowpea intercrop as affected by maize plant density and cowpea cultivar. Field Crops Res, 1993,35:123-133.
[4] 龚万灼, 吴雨珊, 雍太文, 刘卫国, 杨峰, 杨文钰. 玉米-大豆带状套作中荫蔽及光照恢复对大豆生长特性与产量的影响. 中国油料作物学报, 2015,37:475-480.
Gong W Z, Wu Y S, Yong T W, Liu W G, Yang F, Yang W Y. Effects of shade and lighting recovery on growth and yield of soybean in maize-soybean relay strip intercropping. Chin J Oil Crop Sci, 2015,37:475-480 (in Chinese with English abstract).
[5] 高阳, 段爱旺, 刘祖贵, 申孝军. 玉米和大豆条带间作模式下的光环境特性. 应用生态学报, 2008,19:1248-1254.
Gao Y, Duan A W, Liu Z G, Shen X J. Light environment characteristics in maize-soybean strip intercropping system. Chin J Appl Ecol, 2008,19:1248-1254 (in Chinese with English abstract).
[6] 杜进勇, 柴强, 王一帆, 范虹, 胡发龙, 殷文, 李登业. 地上地下互作强度对小麦间作玉米光合特性的影响. 作物学报, 2019,45:1398-1406.
Du J Y, Chai Q, Wang Y F, Fan H, Hu F L, Yin W, Li D Y. Effect of above-and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping. Acta Agron Sin, 2019,45:1398-1406 (in Chinese with English abstract).
[7] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017,43:754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017,43:754-762 (in Chinese with English abstract).
[8] Yang C H, Chai Q, Huang G B. Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of northwest China. Plant Soil Environ, 2010,56:253-262.
[9] Li H W, Jiang D, Wollenweber B, Dai T B, Cao W X. Effects of shading on morphology, physiology and grain yield of winter wheat. Eur J Agron, 2010,33:267-275.
[10] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015,41:1426-1434.
Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agron Sin, 2015,41:1426-1434 (in Chinese with English abstract).
[11] 焦念元, 李亚辉, 刘领, 齐付国, 尹飞, 宁堂远, 李增嘉, 付占国. 隔根对玉米/花生间作光合特性与间作优势的影响. 植物生理学报, 2016,52:886-894.
Jiao N Y, Li Y H, Liu L, Qi F G, Yin F, Ning T Y, Li Z J, Fu Z G. Effects of root barrier on photosynthetic characteristics and intercropping advantage of maize/peanut intercropping. Plant Physiol J, 2016,52:886-894 (in Chinese with English abstract).
[12] 陈光荣, 杨文钰, 张国宏, 王立明, 杨如萍, 雍太文, 刘卫国. 马铃薯/大豆套作对3个大豆品种光合指标和产量的影响. 应用生态学报, 2015,26:3345-3352.
Chen G R, Yang W Y, Zhang G H, Wang L M, Yang R P, Yong T W, Liu W G. Effects of potato/soybean intercropping on photosynthetic characteristics and yield of three soybean varieties. Chin J Appl Ecol, 2015,26:3345-3352 (in Chinese with English abstract).
[13] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014,47:1489-1501.
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Sci Agric Sin, 2014,47:1489-1501 (in Chinese with English abstract).
[14] Yin W, Feng F X, Zhao C, Yu A Z, Hu F L, Chai Q, Gan Y T, Guo Y. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int J Biometeorol, 2016,60:1423-1437.
[15] Chai Q, Qin A Z, Gan Y T, Yu A Z. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron Sustain Dev, 2014,34:535-543.
[16] 陈国栋, 柴强. 根系分隔和供水水平对玉米间作豌豆产量和耗水特征的影响. 西北农业学报, 2013,22(12):25-30.
Chen G D, Chai Q. Effect of root separation and irrigation on yield sand water use characteristics of maize pea intercropping system. Acta Agric Boreali-Occident Sin, 2013,22(12):25-30 (in Chinese with English abstract).
[17] 张向前, 黄国勤, 卞新民, 赵其国. 施氮肥与隔根对间作大豆农艺性状和根际微生物数量及酶活性的影响. 土壤学报, 2012,49:731-739.
Zhang X Q, Huang G Q, Bian X M, Zhao Q G. Effects of nitrogen ferritization and root separation on agronomic traits of intercropping soybean, quantity of microorganisms and activity of enzymes in soybean rhizosphere. Acta Ped Sin, 2012,49:731-739 (in Chinese with English abstract).
[18] Wang Z K, Zhao X N, Wu P T, Gao Y, Yang Q, Shen Y Y. Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Res, 2017,214:1-13.
[19] 王竹, 杨文钰, 吴其林. 玉/豆套作荫蔽对大豆光合特性与产量的影响. 作物学报, 2007,33:1502-1507.
Wang Z, Yang W Y, Wu Q L. Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. Acta Agron Sin, 2007,33:1502-1507 (in Chinese with English abstract).
[20] 杨彩红, 柴强. 交替灌溉对小麦/蚕豆间作系统作物生理生态特性的影响. 中国生态农业学报, 2016,24:883-892.
Yang C H, Chai Q. Water use characteristics of alternately irrigated wheat/maize intercropping in oasis region of northwestern china. Chin J Eco-Agric, 2016,24:883-892 (in Chinese with English abstract).
[21] 宫香伟, 党科, 李境, 罗艳, 赵冠, 杨璞, 高小丽, 高金锋, 王鹏科, 冯佰利. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率. 中国农业科学, 2019,52:4139-4153.
Gong X W, Dang K, Li J, Luo Y, Zhao G, Yang P, Gao X L, Gao J F, Wang P K, Feng B L. Effects of different intercropping patterns on photosynthesis production characteristics and water use efficiency of proso millet. Sci Agric Sin, 2019,52:4139-4153 (in Chinese with English abstract).
[22] 许大全. 气孔的不均匀关闭与光合作用的非气孔限制. 植物生理学通讯, 1995,31:246-252.
Xu D Q. Non-uniform stomatal closure and non-stomatal limitation of photosynthesis. Plant Physiol Commun, 1995,31:246-252 (in Chinese with English abstract).
[23] 王钰云, 王宏富, 李智, 段宏凯, 黄珊珊. 谷子花生间作对谷子光合特性及产量的影响. 中国农业科技导报, 2020,22:153-165.
Wang Y Y, Wang H F, Li Z, Duan H K, Huang S S. Influences of millet-peanut intercropping on photosynthetic characteristics and yield of millet. J Agri Sci Tec, 2020,22:153-165 (in Chinese with English abstract).
[24] 齐广平, 银敏华, 苏鹏海, 康燕霞, 李晓敏, 王金恒. 枸杞苜蓿间作模式下水分调控对枸杞光合特性与水分利用的影响. 水土保持学报, 2019,33:242-248.
Qi G P, Yin M H, Su P H, Kang Y X, Li X M, Wang J H. Effects of water regulation on photosynthetic characteristics and water use of Lycium barbarum under the mode of intercropping alfalfa and Lycium barbarum. J Soil Water Conser, 2019,33:242-248 (in Chinese with English abstract).
[25] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007,33:216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of nitrogen application regimes on yield, quality, and nitrogen use efficiency of super japonica hybrid rice. Acta Agron Sin, 2007,33:216-222 (in Chinese with English abstract).
[26] 苏本营, 宋艳霞, 陈圣宾, 杨文钰. 大豆幼苗对套作玉米遮荫环境的光合生理生态响应. 生态学报, 2015,35:3298-3308.
Su B Y, Song Y X, Chen S B, Yang W Y. Photosynthetic responses of soybean ( Glycine max) seedlings to shading caused by maize in an intercropping system. Chin J Eco, 2015,35:3298-3308 (in Chinese with English abstract).
[27] 邹长明, 王允青, 曹卫东, 刘英, 张晓红, 唐杉. 不同品种小豆光合作用和生长发育对弱光的响应. 应用生态学报, 2015,26:3687-3692.
Zou C M, Wang Y Q, Cao W D, Liu Y, Zhang X H, Tang B. Response of photosynthesis and growth to weak light regime in different Adzuki bean ( Vigna angularis) varieties. Chin J Appl Eco, 2015,26:3687-3692 (in Chinese with English abstract).
[28] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003,248:305-312.
[29] 刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献. 植物生态学报, 2008,32:477-484.
Liu G C, Yang Q F, Li L, Sun J H. Intercropping advantage and contribution of above- and below-ground. Chin J Plant Eco, 2008,32:477-484 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!