欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1926-1937.doi: 10.3724/SP.J.1006.2022.11067

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦籽粒大小相关基因TaGS2克隆及功能分析

王沙沙1(), 黄超1, 汪庆昌1, 晁岳恩1,*(), 陈锋2,*(), 孙建国3, 宋晓4   

  1. 1河南省农业科学院小麦研究所 / 河南省小麦生物学重点实验室, 河南郑州 450002
    2河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室 / 河南省粮食作物协同创新中心, 河南郑州 450002
    3濮阳市农业农村局, 河南濮阳 457000
    4河南省农业科学院植物营养与资源环境研究所, 河南郑州 450002
  • 收稿日期:2021-07-28 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-22
  • 通讯作者: 晁岳恩,陈锋
  • 作者简介:E-mail: shasha0391@126.com
  • 基金资助:
    河南省青年科学基金项目(202300410527);省部共建小麦玉米作物学国家重点实验室开放课题(30500772);国家青年科学基金项目(31801261)

Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat

WANG Sha-Sha1(), HUANG Chao1, WANG Qing-Chang1, CHAO Yue-En1,*(), CHEN Feng2,*(), SUN Jian-Guo3, SONG Xiao4   

  1. 1Wheat Research Institute, Henan Academy of Agricultural Sciences / Henan Province Key Laboratory of Wheat Biology, Zhengzhou 450002, Henan, China
    2Agronomy College, National Key Laboratory of Wheat and Corn Crop Sciences / Collaborative Innovation Center of Henan Grain Crops / Agronomy College, Henan Agricultural University, Zhengzhou 450002, Henan, China
    3Department of Agricultural and Rural Affairs of Puyang, Puyang 457000, Henan, China
    4Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2021-07-28 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-22
  • Contact: CHAO Yue-En,CHEN Feng
  • Supported by:
    Henan Province Science Foundation for Youths(202300410527);National Key Laboratory of Wheat and Maize Crop Science in Henan Agricultural University(30500772);National Science Foundation for Young Scientists of China(31801261)

摘要:

籽粒大小影响小麦粒重, 进而影响产量。目前, 对小麦籽粒大小相关基因的研究已有报道, 但其潜在的分子机制尚不清楚。本研究通过同源克隆的方法从普通小麦中克隆了小麦籽粒大小相关基因TaGS2, 并对其序列进行生物信息学分析。烟草亚细胞定位结果表明, TaGS2定位在细胞核和细胞质内。不同组织材料qRT-PCR分析表明, TaGS2基因在小麦籽粒不同发育时期的表达量最高。构建TaGS2-PLGY-02-RNAi表达载体, 转化小麦。研究结果表明, TaGS2基因在RNAi转基因小麦中表达量显著降低。RNAi转基因小麦的籽粒长度变短, 籽粒宽度变窄, 千粒重也降低。因此推测TaGS2基因可能参与小麦籽粒大小或者千粒重的调控。本研究初步揭示了TaGS2基因功能, 并为小麦高产育种中千粒重的提高提供重要的基因资源。

关键词: 小麦, 籽粒大小, TaGS2基因, 亚细胞定位, 表达分析, RNAi干扰

Abstract:

The kernel size affects kernel weight in wheat, and then affects yield. Up to date, the genes related to kernel size have been reported in bread wheat. However, the underlying molecular mechanisms that regulates the size of wheat kernels remains unclear. In this study, the TaGS2 gene related to kernel size was successfully cloned from bread wheat based on in silico cloning and its sequence was analyzed by bioinformatics. Subcellular localization analysis of tobacco indicated that TaGS2 was localized in the nucleus and cytoplasm. Relative expression levels of different tissues showed that the TaGS2 gene was highly expressed at different developmental stages of the kernels. RNA interference vector TaGS2-PLGY-02-RNAi was constructed and transferred into wheat. The results indicated that the relative expression levels of TaGS2 gene was significantly reduced in RNAi transgenic wheat. In addition, the kernel length and width of RNAi transgenic wheat was shortened, and the thousand-kernel weight was reduced as well. Therefore, it was speculated that TaGS2 gene was probably involved in the regulation of wheat kernel size or thousand-kernel weight. This study preliminarily reveals the TaGS2 gene function and provides important genetic resources for the improvement of thousand-kernel weight in wheat breeding program.

Key words: Triticum aestivum L., kernel size, TaGS2 gene, subcellular localization, expression analysis, RNAi interference

附图1

小麦TaGS2-2A、TaGS2-2B和TaGS5-2D基因组DNA序列对比分析"

图1

小麦TaGS2基因结构图"

图2

小麦TaGS2基因生物信息学分析 A: 结构域预测; B: 蛋白二级结构预测; C: 跨膜结构预测。"

图3

小麦TaGS2蛋白的亚细胞定位"

图4

小麦TaGS2基因同源子不同组织材料的表达模式"

图5

转基因小麦的PCR检测 M: DL2000 marker; 1~14: T1代转基因植株; 15: 野生型小麦。"

图6

TaGS2转基因小麦相对表达量的检测(RNAi) 差异显著性分析(t-test方法), * P < 0.05、** P < 0.01、*** P < 0.001。"

图7

转基因小麦籽粒大小的比较(RNAi) 差异显著性分析(t-test方法), * P < 0.05、** P < 0.01、*** P < 0.001。"

[1] Li X, Liu N, You L, Ke X, Liu H, Huang M, Waddington S R. Patterns of cereal yield growth across China from 1980 to 2010 and their implications for food production and food security. PLoS One, 2016, 11: e0159061.
doi: 10.1371/journal.pone.0159061
[2] 方良学. 从小麦产量因素的相对重要性谈小麦增产技术途径. 河南农林科技, 1982, (10): 7-9.
Fang L X. The technique of increasing wheat yield from the relative importance of wheat yield elements. Henan Agric For Technol, 1982, (10): 7-9. (in Chinese)
[3] 张煜. 河南省小麦品种产量的遗传改进及相关生物学特性的研究. 河南农业大学博士论文,河南郑州, 2015.
Zhang Y. Genetic Improvement in Grain Yield and Associated Biological Characteristics of Wheat in Henan Province of China. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2015. (in Chinese with English abstract)
[4] Brocklehurst P. Factors controlling grain weight in wheat. Nature, 1977, 266: 348-349.
doi: 10.1038/266348a0
[5] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[6] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352
[7] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[8] Li S Y, Zhao B R, Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z, Feng Y Q, Yuan L P, Li C Y. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA, 2013, 110: 3167-3172.
doi: 10.1073/pnas.1300359110
[9] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266-1269.
doi: 10.1038/ng.977
[10] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584.
doi: 10.1073/pnas.1014419107
[11] Shomura A, Izawa T K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023-1028.
doi: 10.1038/ng.169
[12] Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol, 2013, 55: 938-949.
doi: 10.1111/jipb.12062
[13] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950-954.
doi: 10.1038/ng.2327
[14] Zuo J R, Li J Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet, 2014, 48: 99-118.
doi: 10.1146/annurev-genet-120213-092138
[15] Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8: 1455-1465.
doi: 10.1016/j.molp.2015.07.002
[16] Zhang Z Y, Li J J, Tang Z S, Sun X M, Zhang H L, Yu J P, Yao G H, Li G L, Guo H F, Li J L, Wu H M, Huang H G, Xu Y W, Yin Z G, Qi Y H, Huang R F, Yang W C, Li Z C. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. J Exp Bot, 2018, 69: 4723-4737.
doi: 10.1093/jxb/ery256
[17] Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 2013, 190: 117-129.
[18] Flavio B, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172:1165-1177.
doi: 10.1534/genetics.105.044586
[19] Gegas V C, Aida N, Simon G, James S, Lesley F, Simon O, Liz S, Doonan J H, Snape J W. A genetic framework for grain size and shape variation in wheat. Plant Cell, 2010, 22: 1046-1056.
doi: 10.1105/tpc.110.074153
[20] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459
[21] Liu G, Jia L J, Lu L H, Qin D D, Zhang J P, Guan P F, Ni Z F, Yao Y Y, Sun Q X, Peng H R. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor Appl Genet, 2014, 127: 2415-2432.
doi: 10.1007/s00122-014-2387-7
[22] Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118: 313-325.
doi: 10.1007/s00122-008-0901-5 pmid: 18853131
[23] Wu X S, Chang X P, Jing R L. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS One, 2012, 7: e31249.
doi: 10.1371/journal.pone.0031249
[24] Zhang L, Zhao Y L, Gao L F, Zhao G Y, Zhou R H, Zhang B S, Jia J Z. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol, 2012, 195: 574-584.
doi: 10.1111/j.1469-8137.2012.04194.x pmid: 22670578
[25] Zhang L Y, Liu D C, Guo X L, Yang W L, Sun J Z, Wang D W, Zhang A. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol, 2010, 52: 996-1007.
doi: 10.1111/j.1744-7909.2010.00967.x
[26] Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95: 1971-1974.
doi: 10.1073/pnas.95.5.1971
[27] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223.
doi: 10.1007/s00122-010-1437-z
[28] Qin L, Hao C Y, Hou J, Wang Y Q, Li T, Wang L F, Ma Z Q, Zhang X Y. Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. BMC Plant Biol, 2014, 14: 107.
doi: 10.1186/1471-2229-14-107
[29] Liu H, Li H F, Hao C Y, Wang K, Wang Y M, Qin L, An D G, Li T, Zhang X Y. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J, 2019, 18: 1330-1342.
doi: 10.1111/pbi.13298
[30] Zhang J P, Liu W H, Yang X M, Gao A N, Li X Q, Wu X Y, Li L H. Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Mol Biol Rep, 2011, 38: 2337-2347.
doi: 10.1007/s11033-010-0367-9
[31] Wang S S, Zhang X F, Chen F, Cui D. A single-nucleotide polymorphism of TaGS5gene revealed its association with kernel weight in Chinese bread wheat. Front Plant Sci, 2015, 6: 1166.
[32] Ma L, Li T, Hao C Y, Wang Y Q, Chen X H, Zhang X Y. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J, 2016, 14: 1269-1280.
doi: 10.1111/pbi.12492
[33] Hou J, Li T, Wang Y M, Hao C Y, Liu H X, Zhang X Y. ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Plant Biotechnol J, 2017, 15: 1533-1543.
doi: 10.1111/pbi.12735
[34] Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Zhang X Y, Jing R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4 A contributes to grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388.
doi: 10.1093/jxb/eraa271
[35] Ma M, Wang Q, Li Z J, Cheng H H, Li Z J, Liu X L, Song W N, Appels R, Zhao H X. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J, 2015, 83: 312-325.
doi: 10.1111/tpj.12896
[36] Yang J, Zhou Y J, Zhang Y, Hu W G, Zhao H. Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genet, 2019, 20: 98.
doi: 10.1186/s12863-019-0800-6
[37] Wang W, Pan Q L, Tian B, He F, Chen Y Y, Bai G H, Akhunova A, Trick H N, Akhunov E. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J, 2019, 100: 251-264
doi: 10.1111/tpj.14440
[38] Yan X F, Zhao L, Ren Y, Z Dong D, Cui D Q, Chen F. Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Sci Rep, 2019, 9: 2702.
doi: 10.1038/s41598-019-38570-2
[39] 袁岐, 张春利, 赵婷婷, 许向阳. 植物中GRF转录因子的研究进展. 基因组学与应用生物学, 2017, 36: 3145-3151.
Yuan Q, Zhang C L, Zhao T T, Xu X Y. Research advances of GRF transcription factor in plant. Genom Appl Biol, 2017, 36: 3145-3151. (in Chinese with English abstract)
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因的克隆及其在花药开裂中的潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[4] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[5] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[6] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[7] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[8] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[9] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[10] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[11] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[12] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[13] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[14] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[15] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .