欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2007-2015.doi: 10.3724/SP.J.1006.2022.12030

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

广西水稻地方品种核心种质芽期耐盐性全基因组关联分析

夏秀忠1,**(), 张宗琼1,**(), 杨行海1, 荘洁1, 曾宇2, 邓国富2, 宋国显3, 黄欲晓3, 农保选1,*(), 李丹婷1,*()   

  1. 1广西农业科学院水稻研究所 / 广西水稻遗传育种重点实验室, 广西南宁 530007
    2广西农业科学院, 广西南宁 530007
    3钦州市农业科学研究所, 广西钦州 535000
  • 收稿日期:2021-04-26 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-24
  • 通讯作者: 农保选,李丹婷
  • 作者简介:夏秀忠, E-mail: xiaxiuzhong@163.com;
    张宗琼, E-mail: zhangzongqiong@gxaas.net, Tel: 0771-3244040第一联系人:

    ** 同等贡献

  • 基金资助:
    水稻生物学国家重点实验室开放课题(170102);广西重大科技创新基地开放课题(2018-05-Z06-CX04);广西农业科学院发展基金项目(Gui Nong Ke 2021JM07);广西农业科学院发展基金项目(Gui Nong Ke 2021JM49);广西农业科学院基本科研业务专项(Gui Nong Ke 2021YT030)

Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China

XIA Xiu-Zhong1,**(), ZHANG Zong-Qiong1,**(), YANG Xing-Hai1, ZHUANG Jie1, ZENG Yu2, DENG Guo-Fu2, SONG Guo-Xian3, HUANG Yu-Xiao3, NONG Bao-Xuang1,*(), LI Dan-Ting1,*()   

  1. 1Rice Research Institute, Guangxi Academy of Agricultural Sciences / Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, Guangxi, China
    2Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
    3Qinzhou Institute of Agricultural Sciences, Qinzhou 535000, Guangxi, China
  • Received:2021-04-26 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-24
  • Contact: NONG Bao-Xuang,LI Dan-Ting
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    Open Project Program of State Key Laboratory of Rice Biology(170102);Opening Project of Major Science and Technology Innovation Base for Guangxi(2018-05-Z06-CX04);Development Fund of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2021JM07);Development Fund of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2021JM49);Special Funds of Basic Scientific Research Foundation of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2021YT030)

摘要:

水稻属盐敏感的作物, 盐胁迫会导致产量显著减少。我国盐渍地总面积大, 并且呈迅速增长趋势, 因此, 筛选水稻耐盐种质, 培育耐盐水稻品种十分必要。本研究在1.5% NaCl盐胁迫条件下评价419份广西水稻地方品种核心种质种子芽期的相对盐害率, 并利用全基因组关联分析鉴定耐盐位点。研究结果表明: 盐胁迫下, 种子芽期平均发芽率为57.67%, 显著低于对照92.55%, 且夏皮罗-威尔克检验(0.9301)不符合正态分布。基于208,993个SNP标记, 将419份核心种质资源分为6个亚群, 利用一般线性模型(general linear model, GLM)和混合线性模型(mixed linear model, MLM)分析分别获得129个和1个显著关联SNP, 分布在1号、2号、3号、4号、5号、6号、8号、9号和12号染色体上。在14个与水稻耐盐性显著关联区域, 有13个区域与前人定位或克隆的耐盐基因重叠。显著关联区域Chr. 8: 10,564,948~10,733,175为首次报道, 命名为qGR8。qGR8区域内含有53个基因, 其中34个经转录组数据比对获得表达谱, 比对结果推测LOC_Os08g17370为候选基因, 该基因为跨膜9超家族成员, 在耐盐亲本的根部和叶部上调表达, 可能为qGR8区域内水稻芽期耐盐的新基因。这些研究结果为耐盐新基因的克隆奠定基础, 为培育耐盐水稻品种提供新的基因资源。

关键词: 水稻, 核心种质, 芽期, 耐盐, 全基因组关联分析

Abstract:

Rice is a salt-sensitive crop, and salt stress can cause significant reduction in rice yield. China's total saline area is large and growing rapidly. Therefore, it is necessary to screen for the salt-tolerant rice germplasm and cultivate these varieties. In this study, we evaluated the relative salt damage rate of 419 core germplasm of Guangxi rice landraces at seed germination stage under 1.5% NaCl salt stress, and identified the salt-tolerant loci by whole-genome association analysis. The results showed that the average germination rate under salt stress was 57.67%, which was significantly 92.55% lower than that of control group, and the Shapiro-Wilk test (0.9301) found that the distribution did not conform to normal distribution. Based on 208,993 SNP markers, 419 core germplasm was divided into 6 subgroups. We used general linear model (GLM) and mixed linear model (MLM) analysis to identify 129 and 1 significantly associated SNPs, respectively, which were distributed on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, and 12. Among the 14 regions that were significantly associated with rice salt tolerance, 13 regions overlapped with previously identified or cloned salt tolerance genes. The significantly associated region Chr. 8:10,564,948-10,733,175 was reported for the first time and named qGR8. There were 53 genes in qGR8 region, 34 of which were compared with transcriptome data to obtain the expression profiles. We compared the expression profiles and speculated that LOC_Os08g17370 was a candidate gene. This gene is a member of transmembrane 9 superfamily and is up-regulated in roots and leaves of salt-tolerant parent. Thus, this gene might be a novel salt-tolerant gene in qGR8 region at germination stage in rice. These results lay a foundation for cloning new genes of salt-tolerant and provide new genetic resources for breeding salt-tolerant rice varieties.

Key words: Oryza sativa L., core germplasm, germination, salt tolerance, genome-wide association study

图1

419份水稻核心种质芽期耐盐鉴定结果"

图2

连锁不平衡衰减图"

图3

种子芽期全基因组关联分析曼哈顿和QQ-plot图 (a)和(b)一般线性模型的全基因组关联分析; (c)和(d)混合线性模型的全基因组关联分析。(a)和(c)为曼哈顿图, 图中横坐标为染色体, 纵坐标为关联值的-log10 (P)值; 虚线位置(P=4.78E-07)为显著性阈值; (b)和(d)为Q-Q图, 图中X轴为P值零假设下的期望值, Y轴表示P值的观测值。"

表1

34个基因在芽期的转录丰度"

基因名称
Gene ID
转录丰度
Transcript abundances
描述
Description
LOC_Os08g17160 高High Plastocyanin-like domain containing protein, putative, expressed
LOC_Os08g17294 高High PSF3-Putative GINS complex subunit, expressed
LOC_Os08g17320 高High Protein kinase family protein, putative, expressed
LOC_Os08g17370 高High Transmembrane 9 superfamily member, putative, expressed
LOC_Os08g17410 高High BRASSINOSTEROID INSENSITIVE 1 precursor, putative, expressed
LOC_Os08g17510 高High Sulfotransferase domain containing protein, expressed
LOC_Os08g17600 高High SNARE domain containing protein, putative, expressed
LOC_Os08g17610 高High Expressed protein
LOC_Os08g17650 高High LYR motif containing protein, putative, expressed
LOC_Os08g17680 高High Stromal cell-drived factor 2-like protein precursor, putative, expressed
LOC_Os08g17150 低Low Expressed protein
LOC_Os08g17390 低Low Expressed protein
LOC_Os08g17400 低Low WRKY89, expressed
LOC_Os08g17430 低Low Expressed protein
LOC_Os08g17450 低Low Retrotransposon protein, putative, undassified, expressed
LOC_Os08g17500 低Low CinnamoyI-CoA reductase, putative, expressed
LOC_Os08g17520 低Low Flavanol sulfotransferase-like, putative, expressed
LOC_Os08g17655 低Low Expressed protein
LOC_Os08g17110 无No Expressed protein
LOC_Os08g17120 无No Transposon protein, putative, CACTA En/Spm sub-dass
LOC_Os08g17210 无No Transposon protein, putative, CACTA En/Spm sub-dass
LOC_Os08g17220 无No Uncharacterized PE-PGRS family protein PE PGRS54 precursor, putative, expressed
LOC_Os08g17270 无No Expressed protein
LOC_Os08g17330 无No Expressed protein
LOC_Os08g17340 无No Hypothetical protein
LOC_Os08g17350 无No Expressed protein
LOC_Os08g17360 无No Hypothetical protein
LOC_Os08g17440 无No Expressed protein
LOC_Os08g17560 无No Expressed protein
LOC_Os08g17580 无No Hypothetical protein
LOC_Os08g17620 无No Expressed protein
LOC_Os08g17630 无No Expressed protein
LOC_Os08g17640 无No Z0S8-02-C2H2 zinc finger protein, expressed
LOC_Os08g17690 无No Retrotransposon protein, putative, unclassified

图4

不同发育阶段候选基因的表达模式 (a) 34个基因对种子芽期的反应; (b) 基于来自GENEVESTIGATOR的mRNA-seq数据和Affymetrix微阵列数据集, “OS-nnnnn”是指实验ID; (c) 详细查看选择扰动(绝对表达水平)。"

表2

芽期耐盐相关的14个显著关联QTL及候选基因分析"

QTL SNP数量
Number of SNPs
范围
Range
峰值SNP
Peak SNP
P
P-value
候选基因
Candidate gene
基因描述
Gene description
qGR1.1 2 23,752,956-23,786,838 23,752,956 2.33E-08 SIDP361[23] DUF1644蛋白
DUF1644 protein gene
qGR1.2 6 31,534,965-31,593,365 31,534,965 1.09E-07 OsERF922[24] ERF转录因子
ERF transcription factor
qGR3.1 3 1,874,033-1,874,036 1,874,033 2.22E-07 ONAC022[25] 胁迫响应型NAC转录因子基因
Overexpression of a stress-responsive NAC
qGR3.2 16 16,671,741-17,432,153 16,671,952 2.81E-10 OsHAP2E[26] 血红素激活蛋白; 核因子Y; CCAAT结合因子
Heme activator protein gene; nuclear factor Y; CCAAT binding factor
qGR3.3 2 20,621,667-20,925,341 20,621,667 2.00E-07 OsHAK16[27,28] 钾转运蛋白
Potassium transporter
qGR3.4 3 26,339,090-26,393,672 26,339,090 2.89E-09 OsBIHD1[29] 同源异型基因
Rice homeodomain gene
qGR3.5 5 31,937,083-32,488,239 31,982,396 1.32E-10 OsGASR1[30] 赤霉素刺激转录基因
GA-stimulated transcript-related gene; Oryza sativa gibberellic acid stimulated rice 1
qGR4.1 5 17,564,210-19,871,791 17,626,425 8.53E-08 OsHAK1[31] 钾离子转运蛋白
Potassium transporter
qGR4.2 5 24,215,216-24,282,470 24,282,470 2.26E-08 OsBADH1[32] 甜菜碱醛脱氢酶
Betaine aldehyde dehydrogenase
qGR4.3 43 27,473,283-27,958,451 27,907,711 9.60E-13 OsGPX1[33] 线粒体谷胱甘肽过氧化物酶
Mitochondrial glutathione peroxidase
qGR5 9 19,208,151-19,330,003 19,329,999 7.44E-08 SERF1[34] 盐应答的ERF转录因子
Salt-responsive ERF 1
qGR6 12 1,607,061-1,822,395 1,661,829 1.07E-09 OsSIK1[35] 类受体激酶基因; 胁迫诱导的蛋白激酶基因
Receptor-like kinase; stress-induced protein kinase gene 1
qGR8 4 10,564,948-10,733,175 10,564,948 4.24E-08 New gene 未知
Unknown
qGR12 3 21,374,803-22,039,414 21,374,803 7.63E-08 WSL12[36] 白色条纹叶基因
White stripe leaf 12
[1] FAO I. Status of the World's Soil Resources (SWSR): Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, 2015.
[2] 朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010, 43: 474-479.
Zhu D F, Cheng S H, Zhang Y B, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world. Sci Agric Sin, 2010, 43: 474-479. (in Chinese with English abstract)
[3] Zeng L, Shannon M C. Salinity effects on seedling growth and yield components of rice. Crop Sci, 2000, 40: 996-1003.
doi: 10.2135/cropsci2000.404996x
[4] 王遵亲. 中国盐渍土. 北京: 科学出版社, 1993. p 1.
Wang Z Q. China Saline Soil. Beijing: Science Press, 1993. p 1. (in Chinese)
[5] Rao P S, Mishra B, Gupta S R, Rathore A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed, 2010, 127: 256-261.
doi: 10.1111/j.1439-0523.2007.01455.x
[6] 李丹婷, 农保选, 夏秀忠, 曾宇, 刘开强, 刘义明, 林竞鸿, 杨显志, 韩龙植, 张辉, 邓国富. 广西沿海受旱与咸酸田面积的分布与抗旱、耐盐种质资源鉴定. 植物遗传资源学报, 2014, 15: 12-17.
Li D T, Nong B X, Xia X Z, Zeng Yu, Liu K Q, Liu Y M, Lin J H, Yang X Z, Han L Z, Zhang H, Deng G F. Distribution of drought disaster area, acid paddy soil area and evaluation of drought resistance, salt tolerance crop resources in Guangxi coastal area. J Plant Genet Resour, 2014, 15: 12-17. (in Chinese with English abstract)
[7] 应存山. 中国稻种资源. 北京: 中国农业科技出版社, 1993. pp 223-231.
Ying C S. Rice Germplasm Resources in China. Beijing: China Agricultural Science and Technology Press, 1993. pp 223-231. (in Chinese)
[8] Batayeva D, Labaco B, Ye C, Li X, Usenbekov B, Rysbekova A, Dyuskalieva G, Vergara G, Reinke R, Leung H. Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet, 2018, 19: 2.
doi: 10.1186/s12863-017-0590-7 pmid: 29298667
[9] Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G H, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44: 32-39.
doi: 10.1038/ng.1018
[10] Kumar V, Singh A, Mithra S V, Krishnamurthy S L, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S K, Khurana J P, Singh N K, Mohapatra T. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res, 2015, 22: 133-145.
doi: 10.1093/dnares/dsu046
[11] Nayyeripasand L, Garoosi G A, Ahmadikhah A. Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice (New York), 2021, 14: 9.
[12] Shi Y Y, Gao L L, Wu Z C, Zhang X J, Wang M M, Zhang C S, Zhang F, Zhou Y L, Li Z K. Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol, 2017, 17: 92.
doi: 10.1186/s12870-017-1044-0
[13] Yu J, Zhao W G, Tong W, He Q, Yoon M Y, Li F P, Choi B, Heo E B, Kim K W, Park Y J. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. Int J Mol Sci, 2018, 19: 3145.
doi: 10.3390/ijms19103145
[14] 胡时开, 陶红剑, 钱前, 郭龙彪. 水稻耐盐性的遗传和分子育种的研究. 分子植物育种, 2010, 8: 629-640.
Hu S K, Tao H J, Qian Q, Guo L B. Progresses on genetics and molecular breeding for salt-tolerance in rice. Mol Plant Breed, 2010, 8: 629-640. (in Chinese with English abstract)
[15] 井文, 章文华. 水稻耐盐基因定位与克隆及品种耐盐性分子标记辅助选择改良研究进展. 中国水稻科学, 2017, 31: 111-123.
Jing W, Zhang W H. Research progress on gene mapping and cloning for salt tolerance and variety improvement for salt tolerance by molecular marker-assisted selection in rice. Chin J Rice Sci, 2017, 31: 111-123. (in Chinese with English abstract)
[16] Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 2001, 231: 243-254.
doi: 10.1023/A:1010378409663
[17] Rehman S, Harris P, Bourne W F, Wilkin J. The relationship between ions, vigour and salinity tolerance of acacia seeds. Plant Soil, 2000, 220: 229-233.
doi: 10.1023/A:1004701231183
[18] Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Ning G, Ma C X, Zeng H P. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700
[19] 李丹婷, 夏秀忠, 农保选, 刘开强, 张宗琼, 梁耀懋. 广西地方稻种资源核心种质构建和遗传多样性分析. 广西植物, 2012, 32(1): 94-100.
Li D T, Xia X Z, Nong B X, Liu K Q, Zhang Z Q, Liang Y M. Construction of core collection and genetic diversity of landrace rice resources (Oryza sativa) in Guangxi. Guihaia, 2012, 32(1): 94-100. (in Chinese with English abstract)
[20] 杨行海, 农保选, 夏秀忠, 张宗琼, 曾宇, 刘开强, 邓国富, 李丹婷. 水稻糯性相关基因的全基因组关联分析. 植物学报, 2016, 51: 737-742.
doi: 10.11983/CBB15204
Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Genome-wide association study of genes related to waxiness in Oryza sativa. Chin Bull Bot, 2016, 51: 737-742. (in Chinese with English abstract)
[21] Yang X H, Xia X Z, Zeng Y, Nong B X, Zhang Z Q, Wu Y Y, Xiong F Q, Zhang Y X, Liang H F, Deng G F, Li D T. Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PLoS One, 2018, 13: e0196690.
doi: 10.1371/journal.pone.0196690
[22] Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Rapid identification of a new gene influencing low amylose content in rice landraces (Oryza sativa L.) using genome-wide association study with specific-locus amplified fragment sequencing. Genome, 2017, 60: 465-472.
doi: 10.1139/gen-2016-0104
[23] Li M, Guo L J, Guo C M, Wang L J, Chen L. Over-expression of a DUF1644 protein gene, SIDP361, enhances tolerance to salt stress in transgenic rice. J Plant Biol, 2016, 59: 62-73.
doi: 10.1007/s12374-016-0180-7
[24] Liu D F, Chen X J, Liu J Q, Ye J J, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
doi: 10.1093/jxb/ers079
[25] Hong Y B, Zhang H J, Lei H, Li D Y, Song F M. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci, 2016, 7: 4.
[26] Alam M M, Tanaka T, Nakamura H, Ichikawa H, Kobayashi K, Yaeno T, Yamaoka N, Shimomoto K, Takayama K, Nishina H, Nishiguchi M. Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J, 2015, 13: 85-96.
doi: 10.1111/pbi.12239
[27] Wang H, Zhang M S, Guo R, Shi D C, Liu B, Lin X Y, Yang C W. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 194.
doi: 10.1186/1471-2229-12-194
[28] Shen Y, Shen L K, Shen Z X, Jing W, Ge H L, Zhao J Z, Zhang W H. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ, 2016, 38: 2766-2779.
doi: 10.1111/pce.12586
[29] Luo H, Song F, Goodman R M, Zheng Z. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol, 2005, 7: 459-468.
doi: 10.1055/s-2005-865851
[30] Lee S C, Han S K, Kim S R. Salt- and ABA-inducible OsGASR1 is involved in salt tolerance. J Plant Biol, 2015, 58: 96-101.
doi: 10.1007/s12374-014-0497-z
[31] Chen G, Hu Q D, Luo L, Yang T Y, Zhang S, Hu Y B, Yu L, Xu G H. Rice potassium transporter OsHAK1 is essential for maintaining potassium‐mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ, 2015, 38: 2747-2765.
doi: 10.1111/pce.12585
[32] Tang W, Sun J Q, Liu J, Liu F F, Yan J, Gou X J, Lu B R, Liu Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol, 2014, 86: 443-454.
doi: 10.1007/s11103-014-0239-0 pmid: 25150410
[33] Lima M Y, Carvalho F E L, Martins M O, Passaia G, Sousa R H V, Neto M C L, Margis P M, Silveira J A G. Mitochondrial GPX 1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. J Integr Plant Biol, 2016, 58: 737-748.
doi: 10.1111/jipb.12464
[34] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San S B, Guiderdoni E, Schippers J H M. Salt-responsive ERF 1 regulates reactive oxygen species- dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115-2131.
doi: 10.1105/tpc.113.113068
[35] Ouyang S Q, Liu Y F, Liu P, Lei G, Chen S Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62: 316-329.
doi: 10.1111/j.1365-313X.2010.04146.x
[36] Ye W J, Hu S K, Wu L W, Ge C G, Cui Y T, Chen P, Wang X Q, Xu J, Ren D Y, Dong G J, Quan Q, Guo L B. White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). Mol Breed, 2016, 36: 57.
doi: 10.1007/s11032-016-0479-6
[37] Elide F, Cristina S, Giorgio P, Samantha R, Elisabetta B, Elena B, Enrico L, Piergiorgio S, Attilio S G, Paolo F. Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci, 2018, 9: 204.
doi: 10.3389/fpls.2018.00204
[38] 李佳锐, 郑洪亮, 张萃雯, 刘化龙, 王敬国, 孙健, 李宁, 雷蕾, 李宪伟, 邹德堂. 盐碱胁迫下水稻苗期地上部Na+, K+浓度的QTL分析. 华北农学报, 2020, 35(2): 35-42.
Li J R, Zheng H L, Zhang C W, Liu H L, Wang J G, Sun J, Li N, Lei L, Li X W, Zou D T, Zheng H L. QTL analysis of Na+ and K+ concentrations in rice seedling under salt and alkaline stress. Acta Agric Boreali-Sin, 2020, 35(2): 35-42. (in Chinese with English abstract)
[39] 索艺宁, 张春可, 于乔乔, 张恩源, 谢冬微, 冷月, 王亮, 孙健. 盐,碱胁迫下水稻苗期根数和根长的QTL分析. 华北农学报, 2018, 33(5): 9-15.
Suo Y N, Zhang C K, Yu Q Q, Zhang E Y, Xie D W, Leng Y, Wang L, Sun J. QTL analysis of root number and root length in rice seedling stage under salt and alkali stress. Acta Agric Boreali-Sin, 2018, 33(5): 9-15. (in Chinese with English abstract)
[40] 王奉斌, 张燕红, 文孝荣, 袁杰, 布哈丽且木·阿布力孜, 朱小霞, 瞿毅. 两个粳稻材料芽期和苗期耐盐性的QTL定位. 新疆农业科学, 2012, 48: 2205-2210.
Wang F B, Zhang Y H, Wen X R, Yuan J, Buhaliqiemu A, Zhu X X, Qu Y. QTLs mapping for salt tolerance at seed germination and seedling stage in Xinxiang rice (Oryza sativa L.). Xinjiang Agric Sci, 2011, 48: 2205-2210. (in Chinese with English abstract)
[1] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[2] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[3] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[4] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[5] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[6] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[7] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[8] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[9] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[10] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[11] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[12] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[13] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[14] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[15] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[10] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .