欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2753-2765.doi: 10.3724/SP.J.1006.2023.21079

• 耕作栽培·生理生化 • 上一篇    下一篇

不同水分条件下施磷对冬小麦穗花发育及产量的影响

张艳艳1(), 关涵文1, 刘淋茹1, 贺利1,2,3, 段剑钊1,2,3(), 王晨阳1,2, 郭天财1,2, 冯伟1,2,3()   

  1. 1河南农业大学农学院, 河南郑州 450046
    2省部共建小麦玉米作物学国家重点实验室, 河南郑州 450046
    3教育部作物生长发育调控重点实验室, 河南郑州 450046
  • 收稿日期:2022-12-01 接受日期:2023-04-17 出版日期:2023-10-12 网络出版日期:2023-05-17
  • 通讯作者: 段剑钊, E-mail: djz20008@163.com; 冯伟, E-mail: fengwei78@126.com
  • 作者简介:E-mail: zhangyanyan0226@163.com
  • 基金资助:
    国家自然科学基金项目(32101830);“十三五”国家重点研发计划项目(2017YFD0300204)

Effects of phosphorus application on spike and fertile floret development and yield of winter wheat under different water treatments

ZHANG Yan-Yan1(), GUAN Han-Wen1, LIU Lin-Ru1, HE Li1,2,3, DUAN Jian-Zhao1,2,3(), WANG Chen-Yang1,2, GUO Tian-Cai1,2, FENG Wei1,2,3()   

  1. 1Agronomy College of Henan Agriculture University, Zhengzhou 450046, Henan, China
    2State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, Henan, China
    3Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450046, Henan, China
  • Received:2022-12-01 Accepted:2023-04-17 Published:2023-10-12 Published online:2023-05-17
  • Contact: E-mail: djz20008@163.com; E-mail: fengwei78@126.com
  • Supported by:
    National Natural Science Foundation of China(32101830);“13th Five-Year” National Key Research and Development Program of China(2017YFD0300204)

摘要:

为明确不同水分条件下施磷对冬小麦穗花发育成粒的调控效应, 于2020—2022年以重穗型品种周麦16和多穗型品种豫麦49-198为试验材料, 设置3种水分处理(重度干旱W0、中度干旱W1、正常水分W2)和2种磷素水平(不施磷肥P0、施磷肥P1), 利用解剖镜观察小花发育进程, 并测定干物质、可溶性糖含量、氮素含量、磷素含量、产量及其构成因素, 研究不同水分条件下施磷对冬小麦可孕小花发育动态、营养物质的吸收与转运及产量的影响。结果表明, 干旱影响小花的发育和结实, 阻碍了地上部干物质合成及对营养物质的吸收, 显著降低了产量。施磷肥可以促进穗花良好发育, 有效减少小花的退化和败育, 在开花前18 d至开花期, 施磷促进了两小麦品种穗及营养器官的干物质量和氮磷含量、穗部可溶性糖含量、正常水分下营养器官的可溶性糖含量、以及可溶性糖和磷含量的穗/营养器官比值, 而干旱胁迫下营养器官的可溶性糖含量以及氮含量的穗/营养器官比值则呈现相反的趋势。与不施磷肥相比, 施磷处理在3种水分条件下穗粒数与产量均显著提高, 两品种一致, 穗粒数的增幅为7.21%~20.97% (周麦 16)和7.56%~21.84% (豫麦49-198), 产量增幅为13.41%~29.32% (周麦16)和12.66%~29.76% (豫麦49-198), 其中以中度干旱效果最明显。品种间比较, 重穗型品种的穗粒数和产量高于多穗型品种, 而穗数则相反。施磷对穗数和千粒重的影响有所不同, 穗数在重度干旱下施磷处理间差异不显著, 而在中度干旱和正常水分下处理间差异显著, 千粒重在3种水分条件下施磷处理间差异均不显著。可见, 在干旱胁迫下施磷可以促进地上部营养物质生产及同化, 优化可溶性糖、氮及磷素在穗部的分配, 为穗花发育提供充足营养以减少可孕小花退化, 从而提高穗粒数和产量, 其中中度干旱下调控效果最好。研究结果为通过施磷肥缓解干旱胁迫对小麦生长带来的不利影响提供了理论依据和技术支撑。

关键词: 冬小麦, 干旱胁迫, 磷肥, 小花发育, 产量

Abstract:

To clarify the regulatory effect of phosphorus application on spike floret development and grain setting under different water treatments, three water treatments (severe drought W0, moderate drought W1, and normal water W2) and two phosphorus levels (no phosphorus fertilizer P0 and phosphorus fertilizer P1) were set up in 2020-2022 with the massive-spike variety Zhoumai 16 and the multi-spike variety Yumai 49-198 as the experimental materials. The effects of phosphorus application under different water treatments on the developmental dynamics of fertile florets, nutrient uptake, and transport of winter wheat were investigated by observing the florets development process using a dissecting microscope and measuring the dry matter, soluble sugar content, nitrogen content, phosphorus content, yield and its components. The results showed that drought stress affected the floret development and grain set, hindered above-ground dry matter synthesis and nutrient uptake, and reduced significantly yield. The application of phosphorus fertilizer optimized the development of spike and floret and reduced effectively the degeneration and abortion of florets. Phosphorus application promoted the dry matter weight, nitrogen and phosphorus content of spikes and shoot, soluble content of spikes, soluble sugar content of shoot under normal water, as well as the spike/shoot ratio of soluble sugar and phosphorus content, while soluble sugar content of shoot under drought stress, and the spike/shoot ratio of nitrogen content showed the opposite trend from eighteen days before flowering to the anthesis in both wheat varieties. Compared with no phosphorus fertilizer, phosphorus application treatments increased significantly grain number per spike and yield under all three water treatments, which were consistent for both varieties, with the increases of grain number per spike by 7.21%-20.97% (Zhoumai 16) and 7.56%-21.84% (Yumai 49-198) and yield increases by 13.41%-29.32% (Zhoumai 16) and 12.66%-29.76% (Yumai 49-198), with the most obvious effect of moderate drought, and in terms of the absolute number of spike grains and yield indexes, the massive-spike varieties were superior to the multiple-spike varieties. The effect of phosphorus application on spike number and 1000-grain weight were different. There was no significant difference in spike number between treatments of phosphorus application under severe drought and significant differences between treatments under moderate drought and normal water. The difference in 1000-grain weight among phosphorus application treatments under the three water treatments was not significant. In conclusion, phosphorus application under drought stress could promote above-ground nutrient production and uptake, optimize the distribution of soluble sugar, nitrogen, and phosphorus in the spike, provide sufficient nutrients for spike floret development, reduce the degradation of fertile florets, and thus increasing the number of grains per spike with the best regulation effect under moderate drought. The results of the study provide a theoretical basis and technical support for alleviating the adverse effects of drought stress on wheat growth through the application of phosphorus fertilizer.

Key words: winter wheat, drought stress, phosphorus fertilizer, floret development, yield

图1

不同水分条件下施磷对小麦小花发育动态的影响"

图2

不同水分条件下施磷对小麦可孕小花发育形态的影响 从穗下部第1小穗位数起, 以中部第9小穗为例。图2中F1、F2、F3、F4、F5 (Floret 1、Floret 2、Floret 3、Floret 4、Floret 5)分别代表同一小穗位不同小花位."

图3

不同水分条件下施磷对小麦穗部和营养器官干物质积累动态的影响"

图4

不同水分条件下施磷对小麦穗和营养器官可溶性糖含量的影响"

图5

不同水分条件下施磷对小麦穗和营养器官氮含量的影响"

图6

不同水分条件下施磷对小麦穗和营养器官磷含量的影响"

图7

可孕小花与干物质、氮磷及可溶性糖含量的相关性 不同颜色表示相关性的强弱, 越接近红色(正)或蓝色(负)说明相关性越高, 圆形直径越大说明相关性系数越大, ×表示未达显著水平(P>0.05)。sdm: 穗部干物质; adm: 营养器官干物质; sadm: 穗/营养器官干物质; sss: 穗部可溶性糖含量; ass: 营养器官可溶性糖含量; sass: 穗/营养器官可溶性糖含量; snc: 穗部氮含量; anc: 营养器官氮含量; sanc: 穗/营养器官氮含量; spc: 穗部磷含量; apc: 营养器官磷含量; sapc: 穗/营养器官磷含量。"

表1

不同水分条件下施磷对冬小麦产量及产量构成因素的影响"

年份
Year
品种
Cultivar
处理
Treatment
每盆穗数
Spike number per pot
穗粒数
Grain number per spike
千粒重
1000-grain weight (g)
单盆产量
Grain yield per pot (g)
2020-2021 周麦16
Zhoumai 16
W0P0 18.30 e 28.90 f 50.94 a 26.62 f
W0P1 19.50 e 31.10 e 52.02 a 30.97 e
W1P0 27.00 d 34.75 d 48.60 bc 43.09 d
W1P1 32.50 c 41.50 c 50.33 ab 55.17 c
W2P0 34.25 b 43.15 b 46.22 d 57.68 b
W2P1 38.25 a 47.50 a 47.92 cd 68.08 a
豫麦
49-198
Yumai 49-198
W0P0 21.50 d 23.50 f 49.52 a 22.83 f
W0P1 23.75 d 25.60 e 50.06 ab 26.04 e
W1P0 30.25 c 29.33 d 46.97 cd 40.87 d
W1P1 37.00 b 35.05 c 48.08 bc 53.67 c
W2P0 38.60 b 37.05 b 44.90 e 55.08 b
W2P1 44.00 a 40.40 a 45.60 de 64.27 a
2021-2022 周麦16
Zhoumai 16
W0P0 19.70 d 27.07 f 51.24 a 26.42 f
W0P1 21.25 d 29.03 e 52.10 a 29.20 e
W1P0 25.50 c 33.68 d 48.60 b 40.09 d
W1P1 31.00 b 41.33 c 49.66 b 52.37 c
W2P0 30.50 b 44.45 b 46.50 c 55.57 b
W2P1 34.25 a 49.03 a 47.20 c 64.27 a
豫麦
49-198
Yumai 49-198
W0P0 23.60 d 23.09 f 48.11 ab 25.76 f
W0P1 24.70 d 25.63 e 49.07 a 28.66 e
W1P0 29.25 c 28.61 d 46.92 b 38.83 d
W1P1 35.50 b 34.04 c 47.99 ab 49.77 c
W2P0 37.50 b 34.70 b 43.67 c 53.93 b
W2P1 41.00 a 39.43 a 44.10 c 62.79 a
[1] Luo J, Wei B, Han J, Liao Y C, Liu Y. Spermidine increases the sucrose content in inferior grain of wheat and thereby promotes its grain filling. Front Plant Sci, 2019, 10: 1309-1328.
doi: 10.3389/fpls.2019.01309 pmid: 31824519
[2] Shang S H, Li X C, Mao X M, Lei Z D. Simulation of water dynamics and irrigation scheduling for winter wheat and maize in seasonal frost areas. Agric Water Manag, 2004, 68: 117-133.
doi: 10.1016/j.agwat.2004.03.009
[3] 李萍, 尚云秋, 林祥, 刘帅康, 王森, 胡鑫慧, 王东. 拔节期阶段性干旱对小麦茎蘖成穗与结实的影响. 中国农业科学, 2020, 53: 4137-4151.
doi: 10.3864/j.issn.0578-1752.2020.20.004
Li P, Shang Y Q, Lin X, Liu S K, Wang S, Hu H X, Wang D. Effects of drought stress during jointing stage on spike formation and seed setting of main stem and tillers of winter wheat. Sci Agric Sin, 2020, 53: 4137-4151. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.20.004
[4] 孙琦, 张世煌, 郝转芳, 张德贵, 慈晓科, 陈朝辉, 李新海, 谢传晓, 翁建峰, 白丽, 李明顺. 不同年代玉米品种苗期耐旱性的比较分析. 作物学报, 2012, 38: 315-321.
doi: 10.3724/SP.J.1006.2012.00315
Sun Q, Zhang S H, Hao Z F, Zhang D G, Ci X K, Chen Z H, Li X H, Xie C X, Weng J F, Bai L, Li M S. Comparative analysis of seedling drought tolerance of different era maize varieties. Acta Agron Sin, 2012, 38: 315-321. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00315
[5] 王沅, 田正国. 小麦小花发育不同时期土壤干旱对成花与成粒的影响. 作物学报, 1982, 8: 229-236.
Wang Y, Tian Z G. Influence of soil water stress on grain number in different development stages of wheat. Acta Agron Sin, 1982, 8: 229-236. (in Chinese with English abstract)
[6] 关军锋, 李广敏. 干旱条件下施肥效应及其作用机理. 中国生态农业学报, 2002, 10: 63-65.
Guan J F, Li G M. Effects and mechanism of fertilization under drought. Chin J Eco-Agric, 2002, 10: 63-65. (in Chinese with English abstract)
[7] Ramaekers L, Remans R, Rao I M, Blair M W, Vanderleyden J. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res, 2010, 117: 169-176.
doi: 10.1016/j.fcr.2010.03.001
[8] Huang W, Wang Y S, Guo Y P, Du J H, Peng Y Y, Chen X M, Yan G Y. Effects of phosphate treatment on growth dynamics of wheat in wheat/corn intercropping system in southwest hilly area. Agric Sci Technol, 2014, 15: 1345-1347.
[9] 张睿, 刘党校. 氮磷与有机肥配施对小麦光合作用及产量和品质的影响. 植物营养与肥料学报, 2007, 13: 543-547.
Zhang R, Liu D X. Effects of N, P and organic fertilizer on photosynthesis, yield and quality of winter wheat. Plant Nutr Fert Sci, 2007, 13: 543-547. (in Chinese with English abstract)
[10] El-Mejjaouy Y, Lahrir M, Naciri R, Zeroual Y, Mercatoris B, Dumont B, Oukarroum A. How far can chlorophyll a fluorescence detects phosphorus status in wheat leaves (Triticum durum L.). Environ Exp Bot, 2022, 194: 194.
[11] 娄梦玉, 薛华龙, 郭彬彬, 汪江涛, 昝志曼, 马超, 郭大勇, 焦念元, 付国占. 施磷水平与冬小麦产量和土壤有效磷含量的关系. 植物营养与肥料学报, 2022, 28: 1582-1593.
Lou M Y, Xue H L, Guo B B, Wang J T, Zan Z M, Ma C, Guo D Y, Jiao N Y, Fu G Z. Relationship of phosphorus application rate, winter wheat yield and soil available phosphorus content. J Plant Nutr Fert, 2022, 28: 1582-1593 (in Chinese with English abstract).
[12] 陆梅, 孙敏, 高志强, 任爱霞, 雷妙妙, 薛玲珠. 不同施磷水平对旱地小麦产量及其构成要素的影响. 灌溉排水学报, 2018, 37(7): 13-19.
Lu M, Sun M, Gao Z Q, Ren A X, Lei M M, Xue L Z. Impact of different phosphorus application levels on yield and grain traits of winter wheat in drylands. J Irrig Drain, 2018, 37(7): 13-19. (in Chinese with English abstract)
[13] 沈玉芳, 曲东, 王保莉, 张兴昌. 干旱胁迫下磷营养对不同作物苗期根系导水率的影响. 作物学报, 2005, 31: 214-218.
Shen Y F, Qu D, Wang B L, Zhang X C. Effects of phosphorus on root hydraulic conductivity of crops under drought stress. Acta Agron Sin, 2005, 31: 214-218. (in Chinese with English abstract)
[14] 姜宗庆, 封超年, 黄联联, 郭文善, 朱新开, 彭永欣. 施磷量对小麦物质生产及吸磷特性的影响. 植物营养与肥料学报, 2006, 12: 628-634.
Jiang Z Q, Feng C N, Huang L L, Guo W S, Zhu X K, Peng Y X. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (Triticum aestivum L.). Plant Nutr Fert Sci, 2006, 12: 628-634. (in Chinese with English abstract)
[15] 崔金梅, 郭天财, 朱云集, 王晨阳, 马新明. 小麦的穗. 北京: 中国农业出版社, 2008.
Cui J M, Guo T C, Zhu Y J, Wang C Y, Ma X M. Spike of Wheat. Beijing: China Agriculture Press, 2008. (in Chinese)
[16] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 184-185, 195-197, 261-263.
Li H S. Technique on Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 184-185, 195-197, 261-263. (in Chinese)
[17] 王志强, 梁威威, 范雯雯, 林同保. 不同土壤肥力下冬小麦春季干旱的复水补偿效应. 中国农业科学, 2011, 44: 1628-1636.
doi: 10.3864/j.issn.0578-1752.2011.08.011
Wang Z Q, Liang W W, Fan W W, Lin T B. Studies on compensation effects of rewatering on winter wheat suffering from droughts during spring under different soil fertility conditions. Sci Agric Sin, 2011, 44: 1628-1636. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2011.08.011
[18] Pierre B. Positive contribution of stem growth to grain number per spike in wheat. Field Crops Res, 2007, 105: 27-39.
doi: 10.1016/j.fcr.2007.06.008
[19] 刘北城, 张艳艳, 戎亚思, 魏永康, 段剑钊, 贺利, 王永华, 郭天财, 刘万代, 冯伟. 干旱胁迫下喷施14-羟基芸苔素甾醇对冬小麦穗花发育及碳氮代谢的调控. 植物营养与肥料学报, 2021, 27: 1004-1015.
Liu B C, Zhang Y Y, Rong Y S, Wei Y K, Duan J Z, He L, Wang Y H, Guo T C, Liu W D, Feng W. Regulation of spraying 14-hydroxylated brassinosteroid on spike and fertile floret development and carbon and nitrogen metabolism of winter wheat under drought stress. J Plant Nutr Fert, 2021, 27: 1004-1015. (in Chinese with English abstract)
[20] Prystupa P, Savin R, Slafer G A. Grain number and its relationship with dry matter, N and P in the spikes at heading in response to N×P fertilization in barley. Field Crops Res, 2004, 90: 245-254.
doi: 10.1016/j.fcr.2004.03.001
[21] Rowe B A, Johnson D E. Residual benefits of limestone and superphosphate on barely yields and soil-water deficits on krasnozem in north-western Tasmania. Aust J Exp Agric, 1995, 35: 611-617.
doi: 10.1071/EA9950611
[22] 郭文善, 彭永欣, 封超年, 严六零, 高年春. 小麦不同花位籽粒重差异及其原因分析. 江苏农学院学报, 1992, 13(3): 1-7.
Guo W S, Peng Y X, Feng C N, Yan L L, Gao N C. Weight difference of grains at different positions and its reason. J Jiangsu Agric Collage, 1992, 13(3): 1-7. (in Chinese with English abstract)
[23] 王兆龙, 曹卫星, 戴廷波, 周琴. 不同穗型小麦品种小花发育与结实特性研究. 南京农业大学学报, 2000, 23(4): 9-12.
Wang Z L, Cao W X, Dai T B, Zhou Q. Characteristics of floret development and grain set in three wheat genotypes of different spike sizes. J Nanjing Agric Univ, 2000, 23(4): 9-12. (in Chinese with English abstract)
[24] 于振文. 不同密度条件对冬小麦小花发育的影响. 作物学报, 1984, 10: 185-194.
Yu Z W. Influence of different density conditions on floret development of winter wheat. Acta Agron Sin, 1984, 10: 185-194. (in Chinese with English abstract)
[25] Frank A B, Bauer A. Temperature, nitrogen, and carbon dioxide effects on spring wheat development and spikelet numbers. Crop Sci, 1996, 36: 659-665.
doi: 10.2135/cropsci1996.0011183X003600030024x
[26] 刘捷平, 邱泽生, 王沅, 陈阜东. 冬小麦小花分化和退化及其与碳氮代谢的关系. 北京师院学报(自然科学版), 1980, 1: 84-89.
Liu J P, Qiu Z S, Wang Y, Chen F D. Flower differentiation and degradation of winter wheat and its relationship with carbon and nitrogen metabolism. J Beijing Norm Univ (Nat Sci Edn), 1980, 1: 84-89. (in Chinese with English abstract)
[27] 邱泽生, 刘捷平, 黄勤妮, 丁以珊, 张承谦, 王沅. 冬小麦的小花发育与碳氮代谢的关系. 作物学报, 1980, 6: 139-146.
Qiu Z S, Liu J P, Huang Q N, Ding Y S, Zhang C Q, Wang Y. The relation between floret development and carbon nitrogen metabolism in winter wheat. Acta Agron Sin, 1980, 6: 139-146. (in Chinese with English abstract)
[28] 张岁岐, 山仑. 土壤干旱条件下磷素营养对春小麦水分状况和光合作用的影响. 西北植物学报, 1997, 17: 20-27.
Zhang S Q, Shan L. The effect of phosphorus nutrition on water status and photosynthesis of spring wheat under soil drought condition. Acta Bot Boreali-Occident Sin, 1997, 17: 20-27. (in Chinese with English abstract)
[29] 张淑香, 金柯, 蔡典雄, 汪德水, 姚宇卿. 水分胁迫条件下不同氮磷组合对小麦产量的影响. 植物营养与肥料学报, 2003, 9: 276-279.
Zhang S X, Jin K, Cai D Y, Wang D S, Yao Y Q. Effect of different level of N and P on the yield of winter wheat under water stress. Plant Nutr Fert Sci, 2003, 9: 276-279. (in Chinese with English abstract)
[30] 彭永欣, 郭文善, 严六零. 小麦栽培与生理. 南京: 东南大学出版社, 1992.
Peng Y X, Guo W S, Yan L L. Wheat Cultivation and Physiology. Nanjing: Southeast University Press, 1992. (in Chinese)
[31] 邵红雨, 孔广超, 齐军仓, 任丽彤, 王瑞清, 曹连莆. 植物耐盐生理生化特性的研究进展. 安徽农学通报, 2006, 12(9): 51-53.
Shao H Y, Sun G C, Qi J C, Ren L T, Wang R Q, Cao L P. Advance om research on physiological and biochemical characteristics of salt tolerance in plant. Anhui Agric Sci Bull, 2006, 12(9): 51-53. (in Chinese with English abstract)
[32] Morcuende R, Pérez P, Martínez-Carrasco R. Short-term feedback inhibition of photosynthesis in wheat leaves supplied with sucrose and glycerol at two temperatures. Photosynthetica, 1997, 33: 179-188.
doi: 10.1023/A:1022199927264
[33] 张国盛, 张仁陟. 水分胁迫下氮磷营养对小麦幼苗渗透物质累积影响. 甘肃农业大学学报, 2001, 36(1): 95-99.
Zhang G S, Zhang R Z. Effects of nitrogen and phosphorus on osmotic matter accumulation in wheat seedlings under water stress. J Gansu Agric Univ, 36(1): 95-99. (in Chinese with English abstract)
[34] Dinh H T, Kaewpradit W, Jogloy S, Vorasoot N, Patanothai A. Nutrient uptake of peanut genotypes with different levels of drought tolerance under midseason drought. Turk J Agric For, 2014, 38: 495-505.
doi: 10.3906/tar-1309-45
[35] 乔振江, 蔡昆争, 骆世明. 低磷和干旱胁迫对大豆植株干物质积累及磷效率的影响. 生态学报, 2011, 31: 5578-5587.
Qiao Z J, Cai K Z, Luo S M. Interactive effects of low phosphorus and drought stress on dry matter accumulation and phosphorus efficiency of soybean plants. Acta Ecol Sin, 2011, 31: 5578-5587. (in Chinese with English abstract)
[36] 徐婷, 邱悦, 魏波, 李诚, 李春艳, 朱长安. 不同水分条件下磷肥运筹对小麦旗叶和穗部叶绿素及核酸含量的影响. 植物营养与肥料学报, 2021, 27: 654-664.
Xu T, Qiu Y, Wei B, Li C, Li C Y, Zhu C A. Effect of phosphorus management on chlorophyll and the nucleic acid contents in flag leaf and ear parts of wheat under different water conditions. J Plant Nutr Fert, 2021, 27: 654-664 (in Chinese with English abstract).
[1] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[2] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[3] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[4] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[5] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[6] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[7] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[8] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[9] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[10] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[11] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[12] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[13] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[14] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[15] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .