Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (09): 1563-1568.doi: 10.3724/SP.J.1006.2008.01563

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening and Analysis of Mutiple Copy of Oleate Desaturase Gene (fad2) in Brassica napus

XIAO Gang12,ZHANG Hong-Jun12,PENG Qi1,GUAN Chun-Yun12*   

  1. 1 Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha 410128, Hunan; 2 Oil Crops Research Institute, Hunan Agricultural University / Hunan Branch of National Oil Crops Improvement Center, Changsha 410128, Hunan, China
  • Received:2007-12-04 Revised:1900-01-01 Online:2008-09-12 Published:2008-09-12
  • Contact: GUAN Chun-Yun

Abstract: Rapeseed oil is primarily composed of palmitic, stearic, oleic, linoleic and linolenic fatty acids. Delta-12 desaturase (FAD2) in plants converts oleic acid (18:1) to linoleic acid (18:2) by inserting a double bond at the delta-12 position. Fatty acid desaturase-2 gene (fad2) encodes delta-12 desaturase that functions in the endoplasmic reticulum. Fifty-six fad2 DNA clones and nine fad2 seed cDNA clones of B. napus cv. Xiangyou 15 were randomly selected and sequenced in this study. These 56 DNA sequences share 91.0-99.9% identity in nucleotides. Through combination of identical sequences, 11 different sequences were found, of which each represented various copy of fad2 gene. Deduced amino acid sequences revealed that many stop codons occurred in the coding region of six copies, the other five copies shared 90.60-99.74% amino-acid identity. Two differential cDNA were found from nine fad2 seed cDNA sequence, no stop codons in the coding region, revealing that more than one fad2 gene express in developing seeds, and oleic acid content is controlled by multigene. The eleven copies in genome could be divided into two groups based on their homology, and designated as fad2I and fad2II, respectively. RT-PCR analysis in seeds at twenty-seven days after pollination showed that fad2I expressed strongly in seeds, and no expression of fad2II was found, but both of them expressed in leaves.

Key words: Brassica napus, Oleate desaturase, Gene copy number, Sequence-specific primer

[1] CHEN Xue-Ping**,JING Ling-Yun**,WANG Jia,JIAN Hong-Ju,MEI Jia-Qin,XU Xin-Fu,LI Jia-Na,LIU Lie-Zhao*. Correlation Analysis of Sclerotinia Resistance with Lignin Content and Monomer G/S and its QTL Mapping in Brassica napus L. [J]. Acta Agron Sin, 2017, 43(09): 1280-1289.
[2] HOU Lin-Tao,WANG Teng-Yue,JIAN Hong-Ju,WANG Jia,LI Jia-Na,LIU Lie-Zhao. QTL Mapping for Seedling Dry Weight and Fresh Weight under Salt Stress and Candidate Genes Analysis in Brassica napus L. [J]. Acta Agron Sin, 2017, 43(02): 179-189.
[3] LU Kun,Shen Ge-Zi,LIANG Ying,FU Ming-Lian,HE Bin,TIE Lin-Mei,ZHANG Ye, PENG Liu,LI Jia-Na. Analysis of Yield Components with High Harvest Index in Brassica napusunder Environments Fitting Different Yield Levels [J]. Acta Agron Sin, 2017, 43(01): 82-96.
[4] WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111.
[5] TAN Tai-Long,FENG Tao,LUO Hai-Yan,PENG Ye,LIU Rui-Yang,GUAN Chun-Yun. Cloning and Characterization of Phospholipids:Diacylglycerol Acyltransferase (BnPDAT1) cDNA from Brassica napus L. [J]. Acta Agron Sin, 2016, 42(05): 658-666.
[6] KUAI Jie,DU Xue-Zhu,HU Man,ZENG Jiang-Xue,ZUO Qing-Song,WU Jiang-Sheng,ZHOU Guang-Sheng. Effect of Symbiosis Periods and Plant Densities on Growth and Yield of Rapeseed Intercropping Cotton [J]. Acta Agron Sin, 2016, 42(04): 591-599.
[7] LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766.
[8] JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489.
[9] TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126.
[10] WANG Jia,JING Ling-Yun,JIAN Hong-Ju,QU Cun-Min,CHEN Li,LI Jia-Na,LIU Lie-Zhao. Quantitative Trait Loci Mapping for Plant Height, the First Branch Height, and Branch Number and Possible Candidate Genes Screening in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(07): 1027-1038.
[11] ZHENG Xiao-Min,GUO Nan,GAO Tian-Shu,GONG Hui-Ming,ZHANG Tao. Cloning and Expression Analysis of Defensin Genes from Brassica napus [J]. Acta Agron Sin, 2015, 41(05): 725-732.
[12] ZHANG Ya-Jie,LI Jing,PENG Hong-Kun,CHEN Xiu-Bin,ZHENG Hong-Yu,CHEN Sheng-Bei,LIU An-Guo,HU Li-Yong. Dynamic Simulation Model for Growth Duration of Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(05): 766-777.
[13] Lü Yan-Yan,FU San-Xiong,CHEN Song,ZHANG Wei,QI Cun-Kou*. Cloning of BnADH3 Gene from Brassica napus L. and Submergence Tolerance of BnADH3 Transgenic Arabidopsis [J]. Acta Agron Sin, 2015, 41(04): 565-573.
[14] ZHANG Wei-Xin,CAO Hong-Xin,ZHU Yan,LIU Yan,ZHANG Wen-Yu,CHEN Yu-Li,FU Kun-Ya. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant [J]. Acta Agron Sin, 2015, 41(02): 318-328.
[15] WEN Juan,XU Jian-Feng,LONG Yan,XU Hai-Ming,MENG Jin-Ling,WU Jian-Guo,SHI Chun-Hai. QTL Mapping and Analysis Based on Embryo and Maternal Genetic Systems for Semi-Essential Amino Acid Contents in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(01): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!