Acta Agronomica Sinica ›› 2010, Vol. 36 ›› Issue (06): 895-904.doi: 10.3724/SP.J.1006.2010.00895
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WEI Tian-Mei1,2,CHANG Xiao-Ping2,MIN Dong-Hong1,JING Juan-Lian2*
[1] Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李 滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526-1535 (in Chinese with English abstract)[2] Tanksley S D, McCouch S R. Seed bank and molecular maps: Unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066 [3] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determine agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936[4] Farnir F, Coppieters W, Arranz J J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M. Extensive genome-wide linkage disequilibrium in cattle. Genome Res, 2000, 10: 220-227[5] Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet, 1999, 22: 139-144[6] Jorde L B. Linkage disequilibrium and the search for complex disease genes. Genome Res, 2000, 10: 1435-1444[7] Eizonga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870-1878[8] Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Sharon E. Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler IV E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064[9] Maccaferri M, Sanguineti M C, Enrico N, Roberto T. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271-289[10] Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing:China Agriculture Press, 2003[11] Liu K J, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129[12] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959[13] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620[14]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol, 2005, 57: 461-485[15] Jing R-L(景蕊莲), Chang X-P(昌小平). Applications of SSR markers in wheat germplasm.Crop Variety Resour (作物品种资源), 1999, (2): 17-20(in Chinese)[16] Beló A, Zheng P Z, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008, 279: 1-10[17] Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206-217[18]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: Evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433-2437[19]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356[20] Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177[21] Li X-J(李小军), Xu X(徐鑫), Liu W-H(刘伟华), Li X-Q(李秀全), Li L-H(李立会). Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin (中国农业科学), 2009. 42(10): 3397-3404 (in Chinese with English abstract)[22] Liu Z H, Anderson J A, Hu J, Friesen T L, Rasmussen J B & Faris J D. Wheat genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet, 2005, 111: 782-794[23] Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181[24] Beer S C, Siripoonwiwat W, O’donoughue L S, Souza E, Matthews D, Sorrels M E. Associations between molecular markers and quantitative traits in an oat germplasm pool: can we infer linkages? J Agric Genomics, 1997, 3: 197[25] Virk P S, Fordlloyd B V, Jackson M T, Pooni H S, Clemeno T P, Newbury H J. Predicting quantitative variation within rice germplasm using molecular markers. Heredity, 1996, 76: 96-304[26] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler IV E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289[27] Wilson L M, Whitt S R, Ibanez A M, Rochefor T R, Goodman M M, Buckler IV E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004, 16: 2719-2733[28] Szalma S J, Buckler IV E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silk. Theor Appl Genet, 2005, 110: 1324-1333[29] Yu J M, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178: 539-551 |
[1] | XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311. |
[2] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[3] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[4] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[5] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[6] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[7] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[8] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[9] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[10] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[11] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[12] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[13] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
[14] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[15] | MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75. |
|