Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (08): 1336-1341.doi: 10.3724/SP.J.1006.2010.01336

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Tissue Speciality and Stress Responses in Expression of Three WAX2 Homologous Genes in Rice

GAO Guo-Fu1,2,ZOU Jie1,ZHOU Xiao-Yun1,LIU Ai-Ling1,3,WEI Bao-Yang3,CHEN Xin-Bo1,3,*   

  1. 1 Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha 410128, China; 2 Research Institute of Science and Technology Information, Hunan Academy of Agricultural Sciences, Changsha 410125,China; 3 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
  • Received:2010-02-09 Revised:2010-04-21 Online:2010-08-12 Published:2010-05-20
  • Contact: CHEN Xin-Bo。E-mail: xinbochen@live.cn

Abstract: Plant surface is covered by epidermis with a layer of wax. It can regulate non-stomatal water loss, protect against ultraviolet radiation damage and germ invasion. WAX2 gene in Arabidopsis is involved in cuticular wax production and significantly affects leaf water evaporation. Three WAX2 homologous genes in rice, named OsWAX2-1, OsWAX2-2, OsWAX2-3 were found by BLAST search in the NCBI database, with the homology of 56.0%, 55.2%, and 52.0% to Arabidopsis WAX2 gene respectively. Homology of their predicted proteins to Arabidopsis WAX2 protein was 61.5%, 60.5%, and 64.7%, respectively. All of the three proteins had four transmembrane domains and a conserved sterol desaturase domain, suggesting that OsWAX2 proteins are transmembrane proteins and may be related to plant cuticular wax biosynthesis. Expression patterns of the three rice WAX2 homologs were analyzed using semi-quantitative RT-PCR. The results showed that the three OsWAX2 genes had tissue speciality in expression. They also exhibited different expression patterns under high-temperature, low temperature, NaCl, PEG and ABA treatments. These results could be useful for further functional characterization of the three OsWAX2 genes.

Key words: Rice, WAX2 homologous genes, Semi-quantitative RT-PCR, Expression, Stress response

   [1]    Richards R A, Rawson H M, Johnson D A. Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Aust J Plant Physiol, 1986, 13: 465–473   
[2]    Johnson D A, Richard R A, Turner N C. Yield, water relations, gas exchange and surface reflectance of near isogenic wheat lines differing in glaucousness. Crop Sci, 1983, 23: 318–323   
[3]    Rawson H M, Clarke J M. Nocturnal transpiration in wheat. Aust J Plant Physiol, 1988, 15: 387–406   
[4]    Chen X B, Goodwin S M, Boroff V L, Liu X L, Jenks M A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 2003, 15: 1170–1185   
[5]    Kurata J, Kawabata-Awai C, Sakuradani E, Shimizu S, Okada K, Wada T. The YORE-YORE gene regulates multiple aspects of epi dermical cell differentiation in Arabidopsis. Plant J, 2003, 36: 55–66   
[6]    Sanchez F J, Manzanares M, Andres E F, Tenorio J L, Ayerbe L. Residual transpiration rate, epicuticular wax loadand leaf colour of pea plants in drought conditions: influence on harvest index and canopy temperature. Eur J Agron, 2001, 15: 57–70   
[7]    Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14(suppl): 165–183   
[8]    Sanchez F J, Manzanares M, Andres E F, Tenorio J L, Ayerbe L. Residual transpiration rate, epicuticular wax loadand leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur J Agron,2001, 15: 57–70   
[9]    Samdur M Y, Manivel P, Jain V K, Chikani B M, Gor H K, Desai S, Misra J B. Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut. Crop Sci, 2003, 43: 1294–1299
[10]    Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 2005, 42: 689–707
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[3] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[4] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[5] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[6] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[7] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[8] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[9] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[10] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[11] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[12] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[13] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[14] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[15] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!