Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (11): 1864-1869.doi: 10.3724/SP.J.1006.2010.01864

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Frequency of ahFAD2A Alleles and Its Association with Oleic Acid Content in the Peanut Mini Core Collection from China

LEI Yong,JIANG Hui-Fang,Wen Qi-Gen,HUANG Jia-Quan,YAN Li-Ying,LIAO Bo-Shou*   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
  • Received:2010-04-14 Online:2010-11-12 Published:2010-08-30
  • Contact: LIAO Bo-Shou,E-mail:lboshou@hotmail.com

Abstract: Oleic acid content of cultivated peanut (Arachis hypogaea L.) seeds is controlled by the activity of oleoyl-PC desaturase, encoded by two homologous genes (ahFAD2A and ahFAD2B), high oleic acid content results from the mutation of ahFAD2A and ahFAD2B, simultaneously. Two alleles of the ahFAD2A (wild type ahFAD2A-wt and mutation type ahFAD2A-m) exist in the normal oleic accessions, whereas only the ahFAD2A-m allele exists in the high oleic accessions. The ahFAD2A-m is a spontaneous mutation type of ahFAD2A-wt (G-to-A at site 448 bp resulting in a D to N at 150 amino acid position), which results in a dysfunctional desaturase. A specific PCR primer pair for the ahFAD2A amplification was developed in this study. According to the sequencing result of PCR production of the mutant and wild-type ahFAD2A alleles, mutant allele (ahFAD2A-m) accounted for 53.1% of the accessions in the mini-core collection from China, which was frequently found in subspecies hypogaea accessions but absent from subspecies fastigiata accessions; the highly positive correlation between the ahFAD2A-m and the higher oleic acid content was observed. A new SNP was found at the 417 bp (T/C) in the open reading frame (ORF), which did not result in the amino acid substitution, and was found no correlation between the SNP of 417 bp and the oleic content. These results will be helpful for the breeders to select the parent material in the peanut high oleic acid breeding program.

Key words: Peanut (Arachis hypogae L.), ahFAD2A, Allele, Oleic acid content

[1]Braddoc J C, Sims C A, O’Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995, 60: 489–493
[2]Mugendi J B, Sims C A, Gorbet D W, O’Keefe S F. Flavor stability of high-oleic peanuts stored at low humidity. J Am Oil Chem Soc, 1998, 75: 21–25
[3]O’Byrne, D J, Knauft D A, Shireman R B. Low fat-monounsaturated rich diets containing high-oleic peanuts improves serum lipoprotein profiles. Lipids, 1997, 32: 687–695
[4]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 14: 7–11
[5]Knauft D A, Gorbet D W, Norden A J. SunOleic 95R peanut. Florida Agricultural Experimental Stationn Circular, 1995, Miami, No. S-398
[6]Gorbet D W, Knauft D A. SunOleic 97R peanut. Florida Agricultural Experimental Stationn Circular, 1997, No. S-400
[7]Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6: 147–158
[8]Lopez Y, Nadaf H L, Smith O D, Simpson C E, Fritz A K. Expressed variants of Δ12-fatty acid desaturase for the high oleate trait in spanish market-type peanut lines. Mol Breed, 2002, 9: 183–190
[9]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in spanish markettype lines. Theor Appl Genet, 2000, 101: 1131–1138
[10]Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. J Hered, 1989, 80: 252–253
[11]Jung S, Powell G L, Moore K, Abbott A G. The high oleate trait in the cultivated peanut (Arachis hypogaea): II. Molecular basis and genetics of the trait. Mol Gene Genet, 2000, 263: 806–811
[12]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805
[13]Chu Y, Ramos M L, Holbrook C C, Ozias-Akins P. Genetic mutation of oleoyl-PC desaturase (ahFAD2A) in the mini-core collection of the US peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378
[14]Jiang H-F(姜慧芳), Duan N-X(段乃雄), Ren X-P(任小平). Evaluation of groundnut germplasm. Chin J Oil Crop Sci (中国油料作物学报), 1998, 20(3): 31–35 (in Chinese with English abstract)
[15]Jiang H-F(姜慧芳), Ren X-P(任小平), Huang J-Q(黄家权), Liao B-S(廖伯寿), Lei Y(雷永). Establishment of peanut mini core collection in China and exploration of new resource with high oleate. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(3): 294–299 (in Chinese with English abstract)
[16]Bruner A C, Jung S, Abbott A G, Powel G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced Oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci, 2001, 41: 522–526
[17]Jiang H-F(姜慧芳), Ren X-P(任小平), Liao B-S(廖伯寿), Huang J-Q(黄家权), Lei Y(雷永), Chen B-Y(陈本银), Holbrooka C C, Upadhyaya H D. Peanut core collection established in china and compared with ICRISAT mini core collection. Acta Agron Sin (作物学报), 2008, 34(1): 25−30 (in Chinese with English abstract)
[1] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[2] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[3] HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555.
[4] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
[5] Jian-Bo HE,Fang-Dong LIU,Guang-Nan XING,Wu-Bin WANG,Tuan-Jie ZHAO,Rong-Zhan GUAN,Jun-Yi GAI. Characterization and Analytical Programs of the Restricted Two-stage Multi- locus Genome-wide Association Analysis [J]. Acta Agronomica Sinica, 2018, 44(9): 1274-1289.
[6] Jun WANG,Jie-Yu ZHAO,Yang XU,Fang-Jun FAN,Jin-Yan ZHU,Wen-Qi LI,Fang-Quan WANG,Yun-Yan FEI,Wei-Gong ZHONG,Jie YANG. Development and Application of Functional Markers for Rice Blast Resistance Gene Bsr-d1 in Rice [J]. Acta Agronomica Sinica, 2018, 44(11): 1612-1620.
[7] YU Ming-Yang,SUN Ming-Ming,GUO Yue,JIANG Ping-Ping,LEI Yong,HUANG Bing-Yan,FENG Su-Ping,GUO Bao-Zhu,SUI Jiong-Ming,WANG Jing-Shan,QIAO Li-Xian. Breeding New Peanut Line with High Oleic Acid Content Using Backcross Method [J]. Acta Agron Sin, 2017, 43(06): 855-861.
[8] NING Hai-Long,BAI Xue-Lian,LI Wen-Bin,XUE Hong,ZHUANG Xu,LI Wen-Xia,LIU Chun-Yan. Mapping QTL Protein and Oil Contents Using Population from Four-way Recombinant Inbred Lines for Soybean (Glycine max L. Merr.) [J]. Acta Agron Sin, 2016, 42(11): 1620-1628.
[9] ZHAO Chun-Hua,FAN Xiao-Li,WANG Wei-Lian,ZHANG Wei,HAN Jie,CHEN Mei,JI Jun,CUI Fa, LI Jun-Ming. Genetic Composition and Its Transmissibility Analysis of Wheat Candidate Backbone Parent Kenong 9204 [J]. Acta Agron Sin, 2015, 41(04): 574-584.
[10] XIANG Ji-Shan,MU Pei-Yuan,SANG Wei,NIE Ying-Bin,XU Hong-Jun,ZHUANG Li,CUI Feng-Juan,HAN Xin-Nian,ZOU Bo. Effects of Psy-A1, Ppo-A1, Ppo-D1, and TaLox-B1 Alleles on Flour Color of Xinjiang Wheats [J]. Acta Agron Sin, 2015, 41(01): 72-79.
[11] ZHANG Fu-Yan,SHANG Xiao-Li,WU Pei-Pei,SONG Shuang,CHEN Feng,CUI Dang-Qun. Molecular Identification of Alleles on Lpx-B1 locus and Lipoxygenase Activity in Durum Wheat (Triticum turgidum L.) [J]. Acta Agron Sin, 2014, 40(08): 1364-1370.
[12] SUN Xiao-Tang,LU Dong-Dong,OU-YANG Lin-Juan,HU Li-Fang,BIAN Jian-Min,PENG Xiao-Song,CHEN Xiao-Rong,FU Jun-Ru,HE Xiao-Peng,HE Hao-Hua*,ZHU Chang-Lan*. Association Mapping and Resistant Alleles Analysis for Sheath Blight Resistance in Rice [J]. Acta Agron Sin, 2014, 40(05): 779-787.
[13] ZHAO Dong-Sheng,ZHANG Chang-Quan,GU Ming-Hong,LIU Qiao-Quan. Genetic and Expression Analyses of Ef7-l, a Novel Ef7 Allele, in Rice [J]. Acta Agron Sin, 2013, 39(10): 1799-1805.
[14] HU Mao-Long,LONG Wei-Hua,GAO Jian-Qin,FU San-Xiong,CHEN Feng,ZHOU Xiao-Yin,PENG Qi,ZHANG Wei,PU Hui-Ming*,QI Cun-Kou,ZHANG Jie-Fu,CHEN Song. Development and Application of Allele-Specific PCR Markers for Imidazolinone-Resistant Gene BnALS1R in Brassica napus [J]. Acta Agron Sin, 2013, 39(10): 1711-1719.
[15] ZHANG Guo-Hua1,GAO Ming-Gang,ZHANG Gui-Zhi,SUN Jin-Jie,JIN Xue-Mei,WANG Chun-Yang,ZHAO Yan,LI Si-Shen. Association Analysis of Yield Traits with Molecular Markers in Huang-Huai River Valley Winter Wheat Region, China [J]. Acta Agron Sin, 2013, 39(07): 1187-1199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!