Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (02): 286-293.doi: 10.3724/SP.J.1006.2011.00286
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
GUO Hui-Ming,LI Zhao-Chun,ZHANG Han,XIN Yue-Zhi,CHENG Hong-Mei*
[1]Bray E A. Plant responses to water deficit. Trends Plant Sci, 1997, 2: 48–54 [2]Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold induced COR gene expression. Plant J, 1998, 16: 433–442 [3]Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701–713 [4]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751–763 [5]Fan Y-L(樊亚利). Reviewing sixty years’ development of cotton industry in Xinjiang. Finance & Economics of Xinjiang (新疆财经), 2009, (5): 18–23 (in Chinese with English abstract) [6]Artus N N, Uemura M, Steponkus P L, Gilmour S J, Lin C T, Thomashow F. Constitutive expression of the cold regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing to lerance. Proc Natl Acad Sci USA, 1996, 93: 13404–13409 [7]Monroy A F, Castonguay Y, Laberge S, Sarhan F, Vezina L P, Dhindsa R S. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol, 1993, 120: 873–879 [8]Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulation mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599 [9]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035–1040 [10]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406 [11]Gilmour S J, Fowle S G. Thomashow M F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol, 2004, 54: 767–781 [12]Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol, 2006, 47: 141–153 [13]Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042–1052 [14]Zhang X, Fowler S G, Cheng H M, Lou Y G, Rhee S Y, Stockinger E J, Thomashow M F. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing tolerant Arabidopsis. Plant J, 2004, 39: 905–919 [15]Xiong Y W, Fei S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224: 878–888 [16]Wang G-L(王关林), Fang H-J(方宏筠). Plant Genetic Engineering (植物基因工程), 2nd edn. Beijing: Scientific and Technical Publishers, 2002 (in Chinese) [17]Hunag W-K(黄文坤), Cheng H-M(程红梅), Guo J-Y(郭建英), Gao B-D(高必达), Wan F-H(万方浩). Method of RNA extraction from different tissues of invasive alien weed Eupatorium adenophorum. Biotech Bull (生物技术通报), 2007, 2: 147–150 (in Chinese with English abstract) [18]Gong M, Li Y J, Chen S Z. Abscisic acid-induced thermotolerance in maize seedling is mediated by calcium and associated with antioxidant systems. J Plant Physiol, 1998, 153: 488–496 [19]Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water stress studies. Plant Soil, 1973, 39: 205–207 [20]Irigoyen J J, Emerich D W, Sánchez-Díaz M. Water stress induced changes in concentrations of praline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant, 1992, 84: 55–60 [21]Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homoloys in drought and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859–1868 [22]Guy C L. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 187–223 [23]Delauney A J. Verma D P S. Proline biosynthesis and osmo regulation in plants. Plant J, 1993, 4: 215–223 [24]Gilmour S, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854–1865 [25]Cholewa E, Cholewinski A J, Shelp B J, Snedden W A, Bown A W. Cold shock stimulated Caminobutyric acid synthesis ismediated by an increase incytosolic Ca2+, not by an increase in cytosolic H+. Can J Bot, 1997, 75: 375–382 [26]Wanner L A, Junttila O. Cold induced freezing tolerance in Arabidopsis. Plant Physiol, 1999, 120: 391–400 |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[4] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[5] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[6] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[7] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[8] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[9] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[10] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[11] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[12] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[13] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[14] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[15] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
|