Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (06): 1012-1019.doi: 10.3724/SP.J.1006.2011.01012
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHOU Kai,SONG Li-Yan,YE Wu-Wei*,WANG Jun-Juan,WANG De-Long,FAN Bao-Xiang
[1]Guo Y H, Yu Y P, Wang D, Wu C A, Yang D G, Huang J G, Zheng C C. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytologist, 2009, 183: 62–75 [2]Huang B, Jin L, Liu J Y. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). J Plant Physiol, 2008, 165: 214–223 [3]Yang Y-W(杨郁文), Ni W-C(倪万潮), Zhang B-L(张保龙), Shen X-L(沈新莲), Zhang X-G(张香桂), Xu Y-J(徐英俊), Yao S(姚姝). Molecular cloning and expression analysis of a serine/threonine protein kinase gene in upland cotton. Cotton Sci (棉花学报), 2006, 18(3): 140–144 (in Chinese with English abstract) [4]Wu C A, Yang G D, Meng Q W, Zheng C C. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol, 2004, 45: 600–607 [5]Chen Y-J(陈亚娟). Isolation and Characterization of GaP5CS and GaTPS in Gossypium arboretum L. MS Dissertation of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English abstract) [6]Baker J, Steele C, Dure L III. Sequence and characterization of 6 lea proteins and their genes from cotton. Plant Mol Biol, 1988, 11: 277–291 [7]Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol, 1984, 35: 155–189 [8]Tabor C W, Tabor H. Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. Adv Enzymol Related Areas Mol Biol, 1984, 56: 251–282 [9]Sánchez-Aguayo I, Rodriguez-Galan J M, García R, Torreblanca J, Pardo J M. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta, 2004, 220: 278–285 [10]Markham G D, Hafner E W, Tabor C W, Tabor H. S-adenosylmethionine synthetase from Escherichia coli. J Biol Chem, 1980, 255: 9082 [11]Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, Alliotte T, Montagu M V, Inzé D. Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetasee. Plant Cell, 1989, 1: 81–93 [12]Thomas D, Surdin-Kerjan Y. SAM1, the structural gene for one of the S-adenosylmethionine synthetases in Saccharomyces cerevisiae. J Biol Chem, 1987, 362: 16704–16709 [13]Schröder G, Eichel J, Breinig S, Schröder J. Three defferentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: molecular and functional characterization. Plant Mol Biol, 1997, 33: 211–222 [14]Breusegem F V, Dekeyser R, Gielen J, Montagu M V, Caplan A. Characterization of a S-adenosylmethionine synthetase gene in rice. Plant Physiol, 1994, 105: 1463–1464 [15]Zhaki A, shoseyov O, Weiss D. A petunia cDNA encoding S-adenosylmethionine synthetase. Plant Physiol, 1995, 108: 841–842 [16]Doorsselaere J V, Gielen J, Montagu M V, Inzé D. A cDNA encoding S-adenosyl-L-methionine synthetase from poplar. Plant Physiol, 1993, 102: 1365–1366 [17]Larsen P B, Woodson W R. Cloning and nucleotide sequence of an S-adenosylmethionine synthetase cDNA from Carnation. Plant Physiol, 1991, 96: 997–999 [18]Wen C M, Wu M, Goh C J, Pua E C. Cloning and nucleotide sequence of a cDNA encoding S-adenosyl-L-methionine synthetase from mustard (Brassica juncea). Plant Physiol, 1995, 107: 1021–1022 [19]Espartero J, Pintor-Toro J A, Pardo J M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol, 1994, 25: 217–227 [20]Ma X L, Wang Z L, Qi Y C, Zhao Y X, Zhang H. Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress. J Integ Plant Biol, 2003, 45: 1359–1365 [21]Qi Y C, Wang F F, Zhang H, Liu W Q. Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta Physiol Plant, 2009, 32: 263–269 [22]Ye W-W(叶武威), Liu J-D(刘金定). Technique and application on salt-tolerance appraisal of cotton germplasm resources. China Cotton (中国棉花), 1998, 25(9): 34–38 (in Chinese) [23]Salzman R A, Fujita T, Salzman K Z, Hasegawa P M, Bressan R A. An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. Plant Mol Biol Rep, 1999, 17: 11–17 [24]Jiang J-X(蒋建雄), Zhang T-Z(张天真). Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci (棉花学报), 2003, 15(3): 166–167 (in Chinese with English abstract) [25]Ye W-W(叶武威), Zhao Y-L(赵云雷), Wang J-J(王俊娟), Fan B-X(樊保相). Construction of SSH library on root system of salinity-tolerance variety (G. hirsutum L.) under the stress of salinity. Cotton Sci (棉花学报), 2009, 21(5): 339–345 (in Chinese with English abstract) [26]Levitt J. Responses of Plants to Environmental Stresses: Chilling, Freezing, and High Temperature Stresses. New York: Academic Press, 1980 [27]Shen F-F(沈法富), Yu Y-J(于元杰), Bi J-J(毕建杰), Liu F-Z(刘凤珍), Yin C-Y(尹承佾). A diallel analysis of salt tolerance in upland cotton. Acta Agron Sin (作物学报), 2001, 27(1): 50–54 (in Chinese with English abstract) [28]Hua Y(化烨). GsSAMS Gene Transformation into Alfalfa and Cultivation of Transformation New Lines. MS Dissertation of Northeast Agricultural University, 2009 (in Chinese with English abstract) [29]Yang J-L(杨金丽), Zhao X-M(赵小明), Yin H(尹恒), Zhang H-Y(张洪艳), Du Y-G(杜昱光). Analysis of proteins interacted with OIPK by yeast two-hybrid method. Chin J Appl Environ Biol (应用与环境生物学报), 2010, 16(4): 474–477 (in Chinese with English abstract) [30]Qi Y-C(戚元成), Ma L(马雷), Wang F-F(王菲菲), Liu W-Q(刘卫群). Overexpression of S-adenosylmethionine synthetase promote polyamine biosynthesis in transgenic tobacco. Plant Physiol Commun (植物生理学通讯), 2009, 45(8): 791–793 (in Chinese with English abstract) [31]Fan J-P(樊金萍), Bai Xi(柏锡), Li Yong(李勇), Ji W(纪巍), Wang X(王希), Cai H(才华), Zhu Y-M(朱延明). Cloning and function analysis of gene SAMS from Glycine soja. Acta Agron Sin (作物学报), 2008, 34(9):1581–1587 (in Chinese with English abstract) |
[1] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[2] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[3] | YU Guo-Wu, QING Yun, HE Shan, HUANG Yu-Bi. Preparation and application of polyclonal antibody against SSIIb protein from maize [J]. Acta Agronomica Sinica, 2022, 48(1): 259-264. |
[4] | DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592. |
[5] | LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439. |
[6] | WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321. |
[7] | Hui LI, De-Fang LI, Yong DENG, Gen PAN, An-Guo CHEN, Li-Ning ZHAO, Hui-Juan TANG. Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf [J]. Acta Agronomica Sinica, 2020, 46(12): 1914-1922. |
[8] | LI Run-Zhi, JIN Qing, LI Zhao-Hu, WANG Ye, PENG Zhen, DUAN Liu-Sheng. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages [J]. Acta Agronomica Sinica, 2020, 46(11): 1810-1816. |
[9] | CHEN Xiao-Jing,LIU Jing-Hui,YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting. Effects of salt stress on physiological indexes and differential proteomics of oat leaf [J]. Acta Agronomica Sinica, 2019, 45(9): 1431-1439. |
[10] | LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364. |
[11] | TIAN Wen-Gang,ZHU Xue-Feng,SONG Wen,CHENG Wen-Han,XUE Fei,ZHU Hua-Guo. Ectopic expression of S-adenosylmethionine decarboxylase (GhSAMDC1) in cotton enhances salt tolerance in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2019, 45(7): 1017-1028. |
[12] | Hua-Ying MAO,Feng LIU,Wei-Hua SU,Ning HUANG,Hui LING,Xu ZHANG,Wen-Ju WANG,Cong-Na LI,Han-Chen TANG,Ya-Chun SU,You-Xiong QUE. A Sugarcane Phosphatidylinositol Transfer Protein Gene ScSEC14 Responds to Drought and Salt Stresses [J]. Acta Agronomica Sinica, 2018, 44(6): 824-835. |
[13] | Guang-Long ZHU,Cheng-Yu SONG,Lin-Lin YU,Xu-Bing CHEN,Wen-Fang ZHI,Jia-Wei LIU,Xiu-Rong JIAO,Gui-Sheng ZHOU. Alleviation Effects of Exogenous Growth Regulators on Seed Germination of Sweet Sorghum under Salt Stress and Its Physiological Basis [J]. Acta Agronomica Sinica, 2018, 44(11): 1713-1724. |
[14] | SHA Han-Jing, HU Wen-Cheng, JIA Yan, WANG Xin-Peng, TIAN Xue-Fei, YU Mei-Fang, and ZHAO Hong-Wei*. Effect of Exogenous Salicylic Acid, Proline and γ-Aminobutyric Acid on Yield of Rice under Salt Stress [J]. Acta Agron Sin, 2017, 43(11): 1677-1688. |
[15] | WANG Cui-Ping,HUA Xue-Jun,LIN Bin,LIU Ai-Hua. Evolutionary Fate and Expression Pattern of Genes Related to Proline Biosynthesis in Brassica napus [J]. Acta Agron Sin, 2017, 43(10): 1480-1488. |
|