Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (04): 571-577.doi: 10.3724/SP.J.1006.2012.00571


Resistance of Triticum durum Cultivars Waskana and Waskowa to Cereal Cyst Nematode, Heterodera filipjevi and H. avenae

GAO Xiu1,2,CUI Lei2,3,LI Hong-Lian3,WANG Xiao-Ming2,TANG Wen-Hua4,Robert L. CONNER5,LIN Xiao-Hu1,*,LI Hong-Jie2,*   

  1. 1 Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; 4 Department of Plant Pathology, China Agricultural University, Beijing 100193, China; 5 Agriculture and Agri-Food Canada, Morden Research Station, Unit 100-101 Route 100, Morden, MB R6M 1Y5 Canada
  • Received:2011-11-03 Revised:2012-01-19 Online:2012-04-12 Published:2012-02-14
  • Contact: 李洪杰, E-mail: hongjie@caas.net.cn; 林小虎, E-mail: xiaohulin2008@163.com

Abstract: Cereal cyst nematodes (CCN) are a group of important soil-borne pathogens of wheat. Heterodera avenae and H. filipjevi are the major species of CCN that have limited wheat (Triticum aestivum) production in China in recent years. Since the CCN-resistant resource is short, it is important to develop new sources with resistance for breeding purpose in China. Based on the results of a 3-year field test and controlled environment tests, we found that two Canadian Triticum durum cultivars, Waskana and Waskowa, were highly resistant to both Heterodera filipjevi (pathotype Hfc-1) and H. avenae (pathotype HA43) populations from Henan Province, China. The number of white females per plant in Waskana and Waskowa was significantly smaller than that in the susceptible common wheat cultivars Aikang 58, Shi 4185, and Wenmai 19. Although the juveniles of H. filipjevi and H. avenae populations were able to penetrate into the roots of Waskana and Waskowa, the number of juveniles inside the roots was significantly smaller than that of Aikang 58, Shi 4185, and Wenmai 19, resulting in smaller numbers of females on the roots of these durum wheat cultivars. Waskana and Waskowa with resistance to H. filipjevi and H. avenae are useful in developing wheat cultivars with enhanced resistance to CCN in China. Based on the results from the DNA-based soil testing service operated by South Australian Research and Development Institute, the number of eggs of nematodes in the rhizospheric soil samples from the CCN-resistant cultivars Waskana and Waskowa was less than that in the soil samples from the susceptible wheat cultivars. This indicates that application of resistant cultivars might reduce the risk of damage caused by CCN in soil.

Key words: Triticum durum, Cereal cyst nematode (CCN), Heterodera filipjevi, H. avenae, Resistance

[1] Chen P-S(陈品三), Wang M-Z(王明祖), Peng D-L(彭德良). Preliminary report of identification on cereal cyst nematode of wheat in China. Sci Agric Sin(中国农业科学), 1991, 24(5): 89-91 (in Chinese with English abstract)
[2] Peng D L, Nicol J M, Li H M, Hou S Y, Li H X, Chen S L, Ma P, Li H L, Riley I T. Current knowledge of cereal cyst nematode (Heterodera avenae) on wheat in China. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 29-34
[3] Handoo Z A. A key and compendium to species of the Heterodera avenae group (Nematoda: Heteroderidae). J Nematol, 34: 250-202
[4] Peng D L, Ye W X, Peng H, Gu X C. First report of the cyst nematode (Heterodera filipjevi) on wheat in Henan Province, China. Plant Dis, 2010, 94: 1262
[5] Li H L, Yuan H X, Sun J W, Fu B, Nian G L, Hou X S, Xing X P, Sun B J. First record of the cereal cyst nematode Heterodera filipjevi in China. Plant Dis, 2010, 94: 1505
[6] Rathjen A J, Eastwood R F, Lewis J G, Dube A J. Breeding wheat for resistance to Heterodera avenae in Southeastern Australia. Euphytica, 1998, 100: 55-62
[7] Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L J, Gao X, Sun Y, Sun S C, Tang W H. Effective resources of wheat and wheat-Thinopyrum derivatives for resistance to Heterodera filipjevi in China. Crop Sci, 2012, doi: 10.2135/cropsci2011.11.0591
[8] Wang Z-Y(王振跃), Gao S-F(高书峰), Li H-L(李洪连), Sha G-L(沙广乐), Yu M-Q(余懋群). Resistance of different wheat cultivars to cereal cyst nematode. J Henan Agric Sci (河南农业科学), 2006, (5): 50-52 (in Chinese with English abstract)
[9] Zheng J-W(郑经武), Lin M-S(林茂松), Cheng H-R(程瑚瑞), Fang Z-D(方中达). Resistance of cereal cultivars to cereal cyst nematode, Heterodera avenae. Acta Phytophylacica Sin (植物保护学报), 1999, 26(3): 250-254 (in Chinese with English abstract)
[10] Yuan H-X(袁虹霞), Zhang F-X(张福霞), Zhang J-J(张佳佳), Hou X-S(侯兴松), Li H-J(李洪杰), Li H-L(李洪连). Resistance of CIMMYT wheat germplasm to Heterodera filipjevi Xuchang population from Henan Province, China. Acta Agron Sin作物学报), 2011, 37(11): 1956-1966 (in Chinese with English abstract) (
[11] Bekal S, Jahier J, Rivoal R. Host responses of Triticeae to species of the cereal cyst nematode complex in relation to breeding resistant durum wheat. Fundam Appl Nematol, 1998, 21: 359-370
[12] Nicol J M, Bolat N, Yildirim A F, Yorgancilar A, Kilinç A T, Elekçio?lu H I, ?ahin E, Erginba?-Orakçi G, Braun H J. Identification of genetic resistance to cereal cyst nematode (Heterodera filipjevi) for international bread wheat improvement. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 160-165
[13] Slootmaker L A, Lange W, Jochemsen G, Schepers J. Monosomic analysis in bread wheat of resistance to cereal root eelworm. Euphytica, 1974, 23: 497-503
[14] Williams K J, Lewis J G, Bogacki P, Pallotta M A, Willsmore K L, Kuchel H, Wallwork H. Mapping of a QTL contributing to cereal cyst nematode tolerance and resistance in wheat. Aust J Agric Res, 2003, 54: 731-737
[15] Delibes A, Romero D, guaded S, Duce A, Mena M, Lopez-Braña I, Andrés M-F, Martin-Sanchez J-A, García-Olmedo F. Resistance to the cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a “stepping-stone” procedure. Theor Appl Genet, 1993, 87: 402-408
[16] Jahier J, Tanguy A M, Abelard P, Rivoal R.Utilization of deletions to location a gene for resistance cereal cyst nematode (Heterodera avenae), on an Aegilops ventricosa chromosome. Plant Breed, 1996, 115: 282-284
[17] Ogbonnaya F C, Seah S, Delibes A, Jahier J, López-Braña I, Eastwood R F, Lagudah E S. Molecular-genetic characterisation of a new nematode resistance gene in wheat. Theor Appl Genet, 2001, 102: 623-629

[18] Eastwood R F, Lagudah E S, Appels R. A directed search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome, 1994, 37: 311-319
[19] Romero M D, Montes M J, Sin E, López-Braña I, Duce A, Martín-Sánchez, Andrés M F, Delibes A. A cereal cyst nematode (Heterodera avenae Woll.) resistance gene transferred from Aegilops triuncialis to hexaploid wheat. Theor Appl Genet, 1998, 96: 1135-1140

[20] Taylor C, Shepherd K W, Langridge P. A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode resistance gene, CreR. Theor Appl Genet, 1998, 97: 1000-1012
[21] Paull J G, Chalmers K J, Karakousis A, Kretschmer J M, Manning S, Langridge P. Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet. 1998, 96: 435-446

[22] Yu M Q, Jahier J, Person-Dedryver F. Chromosomal location of a gene (Rkn-mnl) for resistance to the root-knot nematode transferred into wheat from Aegilops. Plant Breed, 1995, 114: 358-360
[23] Hurd E A, Patterson L A, Mallough D, Townley-Smitit T F, Owen C H. Waskana, a new durum wheat. Can J Plant Sci, 1972, 52: 687-688
[24] Nian G-L(年高磊), Sun J-W(孙君伟), Hou X-S(侯兴松), Fu B(付博), Yuan H-X(袁虹霞), Xing X-P(邢小萍), Li H-L(李洪连). Identification of pathotypes of three populations of Heterodera filipjevi in Henan province. In: Liao J-L(廖金铃), Peng D-L(彭德良), Duan Y-X(段玉玺), eds. Nematology Research in China (中国线虫学研究), Vol. 3. Beijing: China Agricultural Science and Technology Press, 2010. pp 120-133 (in Chinese)
[25] Yuan H X, Sun J W, Yang W X, Xing X P, Wang Z Y, Riley I T, Li H L. New pathotypes of Heterodera avenae (cereal cyst nematode) from winter wheat in Zhengzhou, Henan, China. Aust Plant Pathol, 2010, 39: 107-111
[26] Byrd D W, Kirkpatrick T, Barker K R. An improved technique for clearing and staining plant tissues for the detection for clearing and staining plant tissues for the detection of nematode. J Nematol, 1983, 15: 142-143
[27] Ophel-Keller K, McKay A, Hartley D, Herdina, Curran J. Development of a routine DNA-based testing service for soilborne diseases in Australia. Aust Plant Pathol, 2008, 37: 243-253
[28] Oka Y, G’zel U, Speigel Y, Mor M. Cereal cyst nematodes in Israel, and their biology and control strategies. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 118-123
[29] Nicol J M, Ogbonnaya F, Singh A K, Bishnoi S P, Kanwar R S, Li H L, Chen S L, Peng D L, Bolat N, ?ahin E, Elekç?lu? H. Current global knowledge of the usability of cereal cyst nematode resistant bread wheat germplasm through international germplasm exchange and evaluation. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 149-153
[30] Nicol J M, Rivoal R. Global knowledge and its application for the integrated control and management of nematodes on wheat. In: Ciancio A, Mukerji K G, eds. Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes. The Netherlands: Springer Academic Publishing, 2008. pp 243-287
[31] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers D J, Appels R, Devos K M. Catalogue of gene symbols for wheat. In: Proc 11th Int Wheat Genet Symp, Brisbane, Queensland, Australia, 2008. pp 24-29
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[7] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[8] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[9] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[10] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[11] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[12] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[13] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[14] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Full text



No Suggested Reading articles found!