Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (06): 947-953.doi: 10.3724/SP.J.1006.2012.00947

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Dissection of Photosynthetic Pigment Content in Cotton Interspecific Chromosome Segment Introgression Lines

WANG Peng,ZHANG Tian-Zhen*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-09-19 Revised:2012-02-22 Online:2012-06-12 Published:2012-04-06
  • Contact: 张天真, E-mail: cotton@njau.edu.cn, Fax: 025-84395307

Abstract: Photosynthesis provides an important foundation for cotton yield and fiber quality. Photosynthetic pigments play an important role in absorption, transfer, and transition of photo energy. In this study, quantitative trait loci (QTLs) mapping was conducted for leaf photosynthetic pigment content using interspecific chromosome segment introgression lines (CSIL). Forty four QTLs (LOD >3) for chlorophyll-a content, chlorophyll-b content, carotenoid content, chlorophyll-a/b ratio value and total chlorophyll content were detected in CSIL population by QTLIciMapping 3.0. Among them, fifteen QTLs were detected in two years. Forty four QTLs were located on fifteen chromosomes including A1(chr.1), A8(chr.8), A9(chr.9), A11(chr.11), A13(chr.13), D1(chr.15), D3(chr.17), D5(chr.19), D6(chr.25), D7(chr.16), D8(chr.24), D9(chr.23), D10(chr.20), D11(chr.21), and D12(chr.26) with the explained phenotypic variation of 1.25%–5.59%. QTLs (qCa-D1-1, qCb-D1-1, qCx.c-D1-1, and qTC-D1-1) influencing chlorophyll-a content, chlorophyll-b content, carotenoid content and total chlorophyll content were located near NAU3714 on chr.D1. It may make a breakthrough in increasing cotton yield through the breeding for high photosynthetic efficiency using the chromosome segment near NAU3714 with modified backcrossing pyramiding breeding (MBPB) technique.

Key words: Chromosome segment introgression lines, Gossypium barbadense, Photosynthetic pigment content, QTL

[1]Deng Z-C(邓仲篪), Qu B(瞿波), Deng X-X(邓秀新). Characteristics of chlorophyll components and chloroplast architecture in cotyledons of citrus reticulata blanco. J Huazhong Agric Univ (华中农业大学学报), 1992, 11(4): 327-332 (in Chinese with English abstract)

[2]Kohel R J. Analysis of irradiation induced virescent mutants and the identification of a new virescent mutant (v5v5v6v6) in Gossypium hirsutum L. Crop Sci, 1973, 13: 86-88

[3]Kohel R J. Genetic analysis of a new virescent mutant in cotton. Crop Sci, 1974, 14: 525-527

[4]Kohel R J. Genetic analysis of virescent mutants and the identification of virescents v12, v13, v14, v15 and v16v17 in upland cotton. Crop Sci, 1983, 23: 289-291

[5]Turcotte E L, Feaster V. The interaction of two genes for yellow foliage in cotton. J Heredity, 1973, 64: 231-232

[6]Turcotte E L, Percy R G. Inheritance of a second virescent mutant in American Pima cotton. Crop Sci, 1988, 28: 1018-1019

[7]Zhang T-Z(张天真), Pan J-J(潘家驹), Feng F-Z(冯福帧). Genetic identification of a genetic male-sterile line associated with virescent indicative character in upland cotton. Sci Agric Sin (中国农业科学), 1989, 22(4): 17-21 (in Chinese with English abstract)

[8]Zhang T-Z(张天真), Pan J-J(潘家驹). Heredity identification of 12 virescent mutants in uplant cotton. Acta Gossypii Sin (棉花学报), 1986, 2: 78-90 (in Chinese with English abstract)

[9]Zhang T-Z(张天真), Pan J-J(潘家驹). Identification of monosome and location of v16v17 duplicate virescent gene in upland cotton. Heredity (遗传), 1989, 11(6): 1-3 (in Chinese with English abstract)

[10]Zhang T-Z(张天真), Pan J-J(潘家驹). Allele examination of virescent mutant and genetic identification of v22 virescent gene in upland cotton. Jiangsu J Agric Sci (江苏农业学报), 1990, 6(1): 24-29 (in Chinese with English abstract)

[11]Pan J-J(潘家驹). Cotton Breeding (棉花育种). Beijing: China Agriculture Press, 1998. pp 60-82

[12]Zhang T Z, Pan J J, Xiao S H, Kohel R G. Interaction of virescent genes in upland cotton (Gossypium hirsutum L.): chlorophyll cotton. Crop Sci, 1997, 37: 1123-1126

[13]Saranga Y, Menz M, Jiang C X, Wright R J, Yakir D, Paterson A H. Genomic dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions. Genome Res, 2001, 11: 1988-1995

[14]Saranga Y, Jiang C X, Wright R J, Yakir D, Paterson A H. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Crop Sci, 2004, 27: 263-277

[15]Qin H-D(秦鸿德), Zhang T-Z(张天真). QTL mapping of leaf chlorophyll content and photosynthetic rates in cotton. Acta Gossypii Sin (棉花学报), 2008, 20(5): 394-398 (in Chinese with English abstract)

[16]Kohel R J, Lewis C F, Richmond T R. Texas marker-1: description of a genetic standard for Gossypium hirsutum L. Crop Sci, 1970, 10: 670-671

[17]Yang C, Guo W Z, Li G Y, Gao F, Lin S S, Zhang T Z. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci, 2008, 174: 290-298

[18]Bao W-K(包维楷), Leng L(冷俐). Determ ination methods for photosynthetic pigment content of bryophyte with special relation of extracting solvents. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11(2): 235-237 (in Chinese with English abstract)

[19]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14:11-13

[20]Fu J D, Yan Y F, Kim M Y, Lee S H, Lee B W. Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome, 2011, 54: 235-243

[21]Jiang G H, He Y Q, Xu G G, Li X H, Zhang Q. The genetic basis of stay-greed in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet, 2004, 108: 688-698

[22]Zuo H L, Xiao K, Zhang Y J, Zhang J Z, Gong Y J, Dong Y J. Mapping of QTLs controlling leaf chlorophyll content and chlorophyll degradation speed of detached leaves in rice. J Mol Cell Biol, 2007, 40: 346-350

[23]Li G-J(李广军), Li H-N(李河南), Cheng L-G(程利国), Zhang Y-M(章元明). QTL analysis for dynamic expression of chlorophyll content in soybean (Glycine max L. Merri.). Acta Agron Sin (作物学报), 2010, 36(2): 242-248 (in Chinese with English abstract)

[24]Cui S-Y(崔世友), Yu D-Y(喻德跃). QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean [Glycine max (L.) Merr.]. Acta Agron Sin (作物学报), 2007, 33(5): 744-750 (in Chinese with English abstract)

[25]Czyczy?o-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stoja?owski S, My?ków B, Milczarski P, Quarrie S. Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet Resour, 2011, 9: 291-295

[26]Yang D L, Jing R L, Chang X P, Li W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L.). J Integr Plant Biol, 2007, 49: 646-654

[27]Song X L, Guo W Z, Han Z G, Zhang T Z. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. J Integr Plant Biol, 2005, 47: 1382-1390

[28]Song X L, Zhang T Z. Molecular mapping of quantitative trait loci controlling chlorophyll content at different developmental stages in tetraploid cotton. Plant Breed, 2010, 129: 533-540

[29]Yu S X, Song M Z, Fan S L, Wang W, Yuan R H. Biochemical genetics of short-season cotton cultivars that express early maturity without senescence. Integr Plant Biol, 2005, 47: 334-342

[30]Zhang J(张建), Liu D-J(刘大军), Lin G(林刚), Zhang Z-S(张正圣). QTL mapping for chlorophyll content in upland cotton (Gossypium hirsutum L.). J Southwest Univ (Nat Sci Edn)(西南大学学报•自然科学版), 2011, 33(4): 1-4 (in Chinese with English abstract)

[31]Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome, 1999, 42:184-203

[32]Cronn R C, Small R L, Wendel J F. Duplicated genes evolve independently after polyploidy formation in cotton. Proc Natl Acad Sci USA, 1999, 96: 14406-14411

[33]Wendel J F, Brubaker C L, Percial E. Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot, 1992, 79: 1291-1310

[34]Chaudhry M R. Commercial cotton hybrids. The Int Cotton Advisory Committee Recorder, XV, 1997, 2: 3-14

[35]Meredith W R, Brown J S. Heterosis and combing ability of cottons originating from differen regions of the United States. J Cotton Sci, 1998, 2: 77-84

[36]Zhai H Q, Cao S Q, Kuang T Y, Cheng S H, Cao S C, Lu W, Min S K, Wan J M, Li L B, Zhu D F. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yield hybrid rice (Oryza sativa. L). Sci China (Ser C), 2002, 45: 637-646

[37]Cai W-J(蔡惟涓), Tu Z-P(屠曾平), Li X-L(李小林), Liu B(刘斌), Liang Z-Y(梁祖杨), Qiu R-H(邱润恒). Adaptability and productivity of photosynthesis in hybrid rice under different temperatures. Chin J Rice Sci (中国水稻科学), 1994, 8(3): 145-150 (in Chinese with English abstract)

[38]Zhao H-J(赵会杰), Zou Q(邹琦), Yu Z-W(于振文). Chlorophyll fluoresence analysis technique and its application to photosynthesis of plant. J Henan Agric Univ (河南农业大学学报), 2000, 34(3): 248-251 (in Chinese with English abstract)

[39]Peleman J D, van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330-334

[40]Guo W-Z(郭旺珍), Zhang T-Z(张天真), Zhu X-F(朱协飞), Pan J-J(潘家驹). Modified backcross pyramiding breeding with molecular marker-assisted selection and its applications in cotton. Acta Agron Sin (作物学报), 2005, 31(8): 963-970 (in Chinese with English abstract)
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[7] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[8] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[12] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[13] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[14] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[15] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!