Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (06): 947-953.doi: 10.3724/SP.J.1006.2012.00947
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Peng,ZHANG Tian-Zhen*
[1]Deng Z-C(邓仲篪), Qu B(瞿波), Deng X-X(邓秀新). Characteristics of chlorophyll components and chloroplast architecture in cotyledons of citrus reticulata blanco. J Huazhong Agric Univ (华中农业大学学报), 1992, 11(4): 327-332 (in Chinese with English abstract)[2]Kohel R J. Analysis of irradiation induced virescent mutants and the identification of a new virescent mutant (v5v5v6v6) in Gossypium hirsutum L. Crop Sci, 1973, 13: 86-88[3]Kohel R J. Genetic analysis of a new virescent mutant in cotton. Crop Sci, 1974, 14: 525-527[4]Kohel R J. Genetic analysis of virescent mutants and the identification of virescents v12, v13, v14, v15 and v16v17 in upland cotton. Crop Sci, 1983, 23: 289-291[5]Turcotte E L, Feaster V. The interaction of two genes for yellow foliage in cotton. J Heredity, 1973, 64: 231-232[6]Turcotte E L, Percy R G. Inheritance of a second virescent mutant in American Pima cotton. Crop Sci, 1988, 28: 1018-1019[7]Zhang T-Z(张天真), Pan J-J(潘家驹), Feng F-Z(冯福帧). Genetic identification of a genetic male-sterile line associated with virescent indicative character in upland cotton. Sci Agric Sin (中国农业科学), 1989, 22(4): 17-21 (in Chinese with English abstract)[8]Zhang T-Z(张天真), Pan J-J(潘家驹). Heredity identification of 12 virescent mutants in uplant cotton. Acta Gossypii Sin (棉花学报), 1986, 2: 78-90 (in Chinese with English abstract)[9]Zhang T-Z(张天真), Pan J-J(潘家驹). Identification of monosome and location of v16v17 duplicate virescent gene in upland cotton. Heredity (遗传), 1989, 11(6): 1-3 (in Chinese with English abstract)[10]Zhang T-Z(张天真), Pan J-J(潘家驹). Allele examination of virescent mutant and genetic identification of v22 virescent gene in upland cotton. Jiangsu J Agric Sci (江苏农业学报), 1990, 6(1): 24-29 (in Chinese with English abstract)[11]Pan J-J(潘家驹). Cotton Breeding (棉花育种). Beijing: China Agriculture Press, 1998. pp 60-82[12]Zhang T Z, Pan J J, Xiao S H, Kohel R G. Interaction of virescent genes in upland cotton (Gossypium hirsutum L.): chlorophyll cotton. Crop Sci, 1997, 37: 1123-1126[13]Saranga Y, Menz M, Jiang C X, Wright R J, Yakir D, Paterson A H. Genomic dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions. Genome Res, 2001, 11: 1988-1995[14]Saranga Y, Jiang C X, Wright R J, Yakir D, Paterson A H. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Crop Sci, 2004, 27: 263-277[15]Qin H-D(秦鸿德), Zhang T-Z(张天真). QTL mapping of leaf chlorophyll content and photosynthetic rates in cotton. Acta Gossypii Sin (棉花学报), 2008, 20(5): 394-398 (in Chinese with English abstract)[16]Kohel R J, Lewis C F, Richmond T R. Texas marker-1: description of a genetic standard for Gossypium hirsutum L. Crop Sci, 1970, 10: 670-671[17]Yang C, Guo W Z, Li G Y, Gao F, Lin S S, Zhang T Z. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci, 2008, 174: 290-298[18]Bao W-K(包维楷), Leng L(冷俐). Determ ination methods for photosynthetic pigment content of bryophyte with special relation of extracting solvents. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11(2): 235-237 (in Chinese with English abstract)[19]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14:11-13[20]Fu J D, Yan Y F, Kim M Y, Lee S H, Lee B W. Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome, 2011, 54: 235-243[21]Jiang G H, He Y Q, Xu G G, Li X H, Zhang Q. The genetic basis of stay-greed in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet, 2004, 108: 688-698[22]Zuo H L, Xiao K, Zhang Y J, Zhang J Z, Gong Y J, Dong Y J. Mapping of QTLs controlling leaf chlorophyll content and chlorophyll degradation speed of detached leaves in rice. J Mol Cell Biol, 2007, 40: 346-350[23]Li G-J(李广军), Li H-N(李河南), Cheng L-G(程利国), Zhang Y-M(章元明). QTL analysis for dynamic expression of chlorophyll content in soybean (Glycine max L. Merri.). Acta Agron Sin (作物学报), 2010, 36(2): 242-248 (in Chinese with English abstract)[24]Cui S-Y(崔世友), Yu D-Y(喻德跃). QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean [Glycine max (L.) Merr.]. Acta Agron Sin (作物学报), 2007, 33(5): 744-750 (in Chinese with English abstract)[25]Czyczy?o-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stoja?owski S, My?ków B, Milczarski P, Quarrie S. Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet Resour, 2011, 9: 291-295[26]Yang D L, Jing R L, Chang X P, Li W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L.). J Integr Plant Biol, 2007, 49: 646-654[27]Song X L, Guo W Z, Han Z G, Zhang T Z. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. J Integr Plant Biol, 2005, 47: 1382-1390[28]Song X L, Zhang T Z. Molecular mapping of quantitative trait loci controlling chlorophyll content at different developmental stages in tetraploid cotton. Plant Breed, 2010, 129: 533-540[29]Yu S X, Song M Z, Fan S L, Wang W, Yuan R H. Biochemical genetics of short-season cotton cultivars that express early maturity without senescence. Integr Plant Biol, 2005, 47: 334-342[30]Zhang J(张建), Liu D-J(刘大军), Lin G(林刚), Zhang Z-S(张正圣). QTL mapping for chlorophyll content in upland cotton (Gossypium hirsutum L.). J Southwest Univ (Nat Sci Edn)(西南大学学报•自然科学版), 2011, 33(4): 1-4 (in Chinese with English abstract)[31]Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome, 1999, 42:184-203[32]Cronn R C, Small R L, Wendel J F. Duplicated genes evolve independently after polyploidy formation in cotton. Proc Natl Acad Sci USA, 1999, 96: 14406-14411[33]Wendel J F, Brubaker C L, Percial E. Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot, 1992, 79: 1291-1310[34]Chaudhry M R. Commercial cotton hybrids. The Int Cotton Advisory Committee Recorder, XV, 1997, 2: 3-14[35]Meredith W R, Brown J S. Heterosis and combing ability of cottons originating from differen regions of the United States. J Cotton Sci, 1998, 2: 77-84[36]Zhai H Q, Cao S Q, Kuang T Y, Cheng S H, Cao S C, Lu W, Min S K, Wan J M, Li L B, Zhu D F. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yield hybrid rice (Oryza sativa. L). Sci China (Ser C), 2002, 45: 637-646[37]Cai W-J(蔡惟涓), Tu Z-P(屠曾平), Li X-L(李小林), Liu B(刘斌), Liang Z-Y(梁祖杨), Qiu R-H(邱润恒). Adaptability and productivity of photosynthesis in hybrid rice under different temperatures. Chin J Rice Sci (中国水稻科学), 1994, 8(3): 145-150 (in Chinese with English abstract)[38]Zhao H-J(赵会杰), Zou Q(邹琦), Yu Z-W(于振文). Chlorophyll fluoresence analysis technique and its application to photosynthesis of plant. J Henan Agric Univ (河南农业大学学报), 2000, 34(3): 248-251 (in Chinese with English abstract)[39]Peleman J D, van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330-334[40]Guo W-Z(郭旺珍), Zhang T-Z(张天真), Zhu X-F(朱协飞), Pan J-J(潘家驹). Modified backcross pyramiding breeding with molecular marker-assisted selection and its applications in cotton. Acta Agron Sin (作物学报), 2005, 31(8): 963-970 (in Chinese with English abstract) |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[4] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[5] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[6] | LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401. |
[7] | HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196. |
[8] | WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859. |
[9] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[10] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[11] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[12] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[13] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[14] | LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347. |
[15] | MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162. |
|