Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (12): 2139-2146.doi: 10.3724/SP.J.1006.2012.02139
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
HE Mei-Jing,LIU Li-Feng*,MU Guo-Jun,HOU Ming-Yu,CHEN Huan-Ying,CUI Shun-Li
[1]Jang J C, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997, 9: 5–19[2]Loreti E, Bellis L D, Alpi A, Perata P. Why and how do plant cells sense sugars? Ann Bot, 2001, 88: 803–812[3]Hanson H D, Hitz W D. Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol, 1982, 33: 163–203[4]Kramer P J, Boyer J S. Water Relations of Plants and Soils. San Diego: Academic Press, 1995. pp 377–404[5]Prado F E, Boero C, Gallardo M, González J A. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa wild seeds. Bot Bull Acad Sin, 2000, 41: 27–34[6]Calderon P, Pontis H G. Increase of sucrose synthase activity in wheat plants after a chilling shock. Plant Sci, 1985, 42: 173–176[7]Déjardin A, Sokolov L N, Kleczkowski L A. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem, 1999, 344: 503–509[8]Baud S, Vaultier M N, Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot, 2004, 55: 397–409[9]Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol, 2010, 51: 294–301[10]Coleman H D, Yan J, Mansfield S D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA, 2009, 4: 13118–13123 [11]Brill E, Thournout M, White R G, Llewellyn D, Campbell P M, Engelen S, Ruan Y L, Arioli T, Furbank R T. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol, 2011, 157: 40–54[12]Fernández E B, Muñoz F J, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma M T, Romero J P. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA, 2012, 109: 321–326[13]Geiser M, Döring H P, Wöstemeyer J, Behrens U, Tillmann E , Starlinger P. A cDNA clone from Zea mays endosperm sucrose synthetase mRNA. Nucl Acids Res, 1980, 8: 6175–6188[14]Buchner P, Poret M, Rochat C. Cloning and characterization of a cDNA encoding a second sucrose synthase gene in pea (Pisum sativum L.). Plant Physiol, 1998, 117: 719[15]Wienkoop S, Larrainzar E, Glinski M, Gonza′lez E M, Igor C A, Weckwerth W. Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry. J Exp Bot, 2008, 59: 3307–3315[16]Chopra S, Del-favero J, Dolferus R , Jacobs M. Sucrose synthase of Arabidopsis: genomic cloning and sequence characterization. Plant Mol Biol, 1992, 18: 131–134[17]Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999, 4: 401–407[18]Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot, 2002, 53: 61–71[19]Crespi M D, Zabaleta E J, Pontis H G, Salerno G L. Sucrose synthase expression during cold acclimation in wheat. Plant Physiol, 1991, 96: 887–891[20]Rosa M, Hilal M, Gonzálezb J A, Prado F E. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem, 2009, 47: 300–307 [21]Kleines M, Elster R C, Rodrigo M J, Blervacq A S, Salamini F, Bartels D. Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta, 1999, 209: 13–24[22]Sicilia C B, Amado S H, Melendi G P, Carbonero P. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta, 2011, 234: 391–403[23]Siegien I N, Leszczynska R B, Cômea D, Corbineau F. Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci, 2004, 167: 879–888[24]Lu S W, Li T L, Jiang J. Effects of salinity on sucrose metabolism during tomato fruit development. J Afr Biotechnol, 2010, 9: 842–849 [25]Arrese-Igor C, Gonzalez E M, Gordon A J, Minchin F R, Galvez L, Royuela M, Cabrerizo P M, Aparicio-Tejo P M. Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Plant Physiol, 1999, 27: 189–212[26]Silvente S, Camas A, Lara M. Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule-enhanced sucrose synthase gene. J Exp Bot, 2003, 54: 749–755[27]Salanoubat M, Belliard G. The steady-state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis and sucrose concentration. Gene, 1989, 84: 181–185[28]Zeng Y, Wu Y, Avigne W T, Koch K E. Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol, 1998, 116: 1573–1583[29]Loreti E, Poggi A, Novi G, Alpi A, Petrata P. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol, 2005, 137: 1130–1138[30]Zhang J-M(张吉民), Miao H-R(苗华荣), Li Z-C(李正超), Hao S-M(郝素美), Yan Q(闫强), Zhu E-J(祝恩吉). Status and prospects for the processing, utilization and trade of peanut. J Wuhan Polytech Univ (武汉工业学院学报), 2002, (2): 104–106 (in Chinese with English abstract)[31]Nageswara R C. Stability of the relationship between specific leaf area and carbon isotope is crimination across environments in peanut. Crop Sci, 1994, 34: 98–103[32]Lauriano J A, Lidon, F C, Carvalho C A, Campos P S, Matos M C. Drought effects on membrane lipids and photosynthetic activity in different peanut cultivars. Photosynthetica, 2000, 38: 7–12[33]Rucker K S, Kvien C K, Holbrook C C, Hook J E. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci, 1995, 22: 14–18[34]Suther D M, Patel M S. Yield and nutrient absorption by groundnut and iron availability in soil as influenced by lime and soil water. J Ind Soc Soil Sci, 1992, 40: 594–596[35]Cole R J, Sanders T H, Dorner J W, Blankenship P D. Environmental conditions required to induce preharvest aflatoxin contamination of groundnuts: summary of six years’ research. In Aflatoxin contamination of groundnuts. Patancheru, 1989: 279–287[36]Jonathan H W, Boote K J. Physiology and modeling-Predicting the “unpredictable legume”. Peanut Sci, 1995, 9: 301–353[37]Jiang H-F(姜慧芳). Peanut Breeding (花生育种学). Beijing: China Agriculture Press, 1997 (in Chinese)[38]Hirose T, Scofield G N, Terao T. An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci, 2008, 174: 534–543[39]Zhang D Q, Xu B H, Yang X H, Zhang Z Y, Li B L. The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genom, 2011, 7: 443–456[40]Sambrook J, Russell D W. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2001. pp 822–826[41]Brand Y, Hovav R. Identification of suitable internal control genes for quantitative real-time PCR expression analyses in Peanut (Arachis hypogaea L). Peanut Sci, 2009, 37: 1–9[42]Yu X-J(於新建). Detection of sucrose synthase and Sucrose phosphate synthase enzyme activity uses a spectrophotometry strategy. In: Plant Physiology Laboratory Manual (植物生理实验手册). Shanghai: Shanghai scientific & Technical Publishers, 1985. pp 148–149 (in Chinese)[43]Roover J D, Vandenbranden K, Laere A V, Ende W V. Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta, 2000, 210: 808–814[44]Gill P K, Sharma A D, Singh P, Bhullar S S. Effect of various abiotic stresses on the growth soluble sugars and water relations of sorghum seedlings grown in light and darkness. J Plant Physiol, 2001, 27: 72–84[45]Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol, 2005, 8: 93–102[46]He H-Y(贺鸿雁), Sun C-H(孙存华), Du W(杜伟), Li Y(李扬). Effects of PEG 6000 osmotic stress on osmolytes of peanut seedling. J Chin Oil Crop Sci (中国油料作物学报), 2006, 28(1): 76–78 (in Chinese with English abstract)[47]Jha A B, Dubey R S. Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. Plant Physiol, 2004, 161: 101–108[48]Pelah D, Wang W X, Altman A, Shoseyov O, Bartels D. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum, 1997, 99: 153–159[49]Chenk P W, Snaar-Jagalska B E. Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta, 1999, 1449: 1–24[50]Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451–457[51]Bieniawska Z, Barratt D H P, Garlick A P, Thole V, Kruger N J, Martin C, Zrenner R, Smith A M. Analysis of the sucrose synthase gene family in Arabidopsis. Plant J, 2007, 49: 810–828[52]Núñez J G A, Tiessen A. Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta, 2010, 232: 701–718 |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[5] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[6] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[7] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[8] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[9] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[10] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[11] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[12] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[13] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[14] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[15] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
|