Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (02): 319-329.doi: 10.3724/SP.J.1006.2013.00319
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
CHEN Bing1,HAN Huan-Yong1,WANG Fang-Yong1,LIU Zheng1,DENG Fu-Jun1,LIN Hai1,YU Yu1,LI Shao-Kun2,3,WANG Ke-Ru2,3,XIAO Chun-Hua2,3
[1]Chen B, Li S K, Wang K R, Zhou G Q, Bai J H. Evaluating the severity level of cotton Verticillium using spectral signature analysis. Int J Remote Sens, 2012, 33: 2706–2724[2]Reddy K R, Koti S, Davidonis G H, Reddy V R. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield and fiber quality. Agron J, 2004, 96: 1148–1157[3]Lee Y J, Yang C M, Chang K W, Shen Y. A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agron J, 2008, 100: 205–212[4]Hatfield J L. Remote detection of crop stress: application to plant pathology. Phytopathology, 1990, 80: 37–39[5]Liu W(刘炜), Chang Q-R(常庆瑞), Guo M(郭曼), Xing D-X(邢东兴), Yuan Y-S(员永生). Monitoring of leaf nitrogen content in summer corn with first derivative of spectrum based on modified red edge. J Northwest A&F Univ (Nat Sci Edn)(西北农林科技大学学报•自然科学版), 2010, 38(4): 91–98 (in Chinese with English abstract)[6]Smith K L, Steven M D, Colls J J. Use of hyperspectral derivative ratios in the red edge region to identify plant stress responses to gas leak. Remote Sens Environ, 2004, 92: 207–217[7]Jiang J-B(蒋金豹), Chen Y-H(陈云浩), Huang W-J(黄文江). Using hyper-spectral derivative index to monitor winter wheat diseases. Pectroscopy Spectral Anal (光谱学与光谱分析), 2007, 27(12): 2475–2479 (in Chinese with English abstract)[8]Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ, 2002, 81: 45–57[9]Ponzoni F J, Goncalves J L. Spectral features associated with nitrogen, phosphorus, and potassium deficiencies in Eucalyptus saligna seedling leaves. Int J Remote Sens, 1999, 20: 2249–2264[10]Schlemmer M R, Francis D D, Shanahan J F, Schepers J S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J, 2005, 97: 106–112[11]Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens Environ, 1998, 66: 273–285[12]Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens Environ, 1995, 53(3): 199–211[13]Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ, 2002, 81: 416–426[14]Errmann I, Karnieli A, Bonfil D J, Cohen Y, Alchanatis V. SWIR-based spectral indices for assessing nitrogen content in potato fields. Int J Remote Sens, 2010, 31: 5127–5143[15]Huang W-J(黄文江), Wang J-H(王纪华), Liu L-Y(刘良云), Zhao C-J(赵春江), Wang J-D(王锦地), Du X-H(杜小鸿). The red edge parameters iversification disciplinarian and its application for nutrition diagnosis. Remote Sens Technol Appl (遥感技术与运用), 2003, 18(4): 206–211 (in Chinese with English abstract)[16]Lamb D W, Steyn-Ross M, Schaare P, Hanna M M, Silvester W, Steyn-Ross A. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: theoretical modeling and experimental observations. Int J Remote Sens, 2002, 23: 3619–3648[17]Jiang J-B(蒋金豹), Chen Y-H(陈云浩), Huang W-J(黄文江), Li J(李京). Hyperspectral estimation models for LTN content of winter wheat canopy under stripe rust stress. Trans CSAE (农业工程学报), 2008, 24(1): 35–39 (in Chinese with English abstract)[18]Ju C H, Tian Y C, Yao X, Cao W X, Zhu Y, Hannaway D B. Estimating leaf chlorophyll content using red edge parameters. Pedosphere, 2010, 20: 633–644[19]Xue L-H(薛利红), Yang L-Z(杨林章). Comparative study on estimation of chlorophyll content in spinach leaves using various red edge position extraction techniques. Trans CSAE (农业工程学报), 2008, 24(9): 165–169 (in Chinese with English abstract) [20]Yao X(姚霞), Tian Y-C(田永超), Liu X-J(刘小军), Cao W-X(曹卫星), Zhu Y(朱艳). Comparative study on monitoring canopy leaf nitrogen status on red edge position with different algorithms in wheat. Sci Agric Sin (中国农业科学), 2010, 43(13): 2661–2667 (in Chinese with English abstract)[21]Zhang Q-L(张清林), Chen W-H(陈文惠), Zhang Y-H(张永贺), Guo X-C(郭啸川), Chu W-D(褚武道), Xu W-M(许炜敏). Estimation m odels of chlorophyll contents in leaves of Acacia confusa based on the red edge position. J Subtrop Resour Environ (亚热带资源与环境学报), 2011, 6(3): 9–17 (in Chinese with English abstract)[22]Cho M A, Skidmore A K.A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ, 2006, 101: 181–193[23]Huang C-Y(黄春燕), Wang D-W(王登伟), Zhang Y-X(张煜星). Estimation of cotton canopy chlorophyll density and leaf area index based on red-edge parameters. Trans CSAE (农业工程学报), 2009, 25(S2): 137–141 (in Chinese with English abstract)[24]Tan C-W(谭昌伟), Wang J-H(王纪华), Guo W-S(郭文善), Lu J-F(陆建飞), Zhang H-C(张洪程), Jiang H-R(蒋海荣). Agronomy parameters of summer maize diagnosed by red edge parameters obtainable from remotely sensing data. J Fujian Agric For Univ (Nat Sci Edn)(福建农林大学学报•自然科学版), 2006, 35(2): 123–128 (in Chinese with English abstract)[25]Main R, Cho M A, Mathieu R, O’Kennedy M M, Ramoelo A, Koch S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J Photogram Remote Sens, 2011, 66: 751–761[26]Huang J F, Wang X Z, Wang R C. The red edge parameters as indicators of rice nitrogen levels. Multispect Hyperspect Remote Sens Instr Appl, 2003, 4897: 311–317[27]Fang Z-D(方中达). Research Method for Plant Disease (植病研究方法). Beijing: Agriculture Press, 1979. pp 3–5 (in Chinese)[28]Danson F M. red edge response to leaf area index. Int J Remote Sens, 1995, 16: 183–188[29]Bao S-D(鲍士旦). Analysis for Soil and Agricultural Chemistry (土壤农化分析) 3rd edn. Beijing: China Agriculture Press, 2000. pp 14–38 (in Chinese)[30]Demetrialdes-Shan T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sens Environ, 1990, 33: 55–64[31]Chen B(陈兵), Li S-K(李少昆), Wang K-R(王克如), Wang F-Y(王方永), Tan H-Z(谭海珍), Liu G-Q(刘国庆), Chen J-L(陈江鲁). Spectrum characteristics of cotton single leaf infected by Verticillium wilt and estimation on severity level of disease. Sci Agric Sin (中国农业科学), 2007, 40(12): 2709–2715 (in Chinese with English abstract)[32]Jing X(竞霞), Wang J-H(王纪华), Song X-Y(宋晓宇) , Xu X-G(徐新刚), Chen B(陈兵), Huang W-J(黄文江). Continuum removal method for cotton Verticillium wilt severity monitoring with hyperspectral data. Transact CSAE (农业工程学报), 2010, 26(1): 193–198 (in Chinese with English abstract)[33]Liang S-Z(梁守真), Shi P(施平), Ma W-D(马万栋), Xing Q-G(邢前国), Yu L-J(于良巨). Relational analysis of spectra and red-edge characteristics of plant leaf and leaf biochemical constituent. Chin J Eco Agric (中国生态农业学报), 2010, 18(4): 804–809 (in Chinese with English abstract)[34]Lu Y-L(卢艳丽), Li S-K(李少昆), Bai Y-L(白由路), Xie R-Z(谢瑞芝), Gong Y-M(宫永梅). Spectral red edge parametric variation and correlation analysis with n content in winter wheat. Remote Sens Technol Appl (遥感技术与应用), 2007, 21(1): 1–7 (in Chinese with English abstract) |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[9] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[10] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[11] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[12] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[13] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[14] | ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437. |
[15] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
|