Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (03): 563-569.doi: 10.3724/SP.J.1006.2013.00563
• RESEARCH NOTES • Previous Articles
ZHANG De-Jing,QIN Li-Xia,LI Long,RAO Yue,LI Xue-Bao,XU Wen-Liang*
[1]Chen J, Varner J E. Isolation and characterization of cDNA clones for carrot extensin and proline-rich 33-kDa protein. Proc Natl Acad Sci USA, 1985, 82: 4399–4403[2]Hong J C, Nagao R T, Key J L. Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell, 1989, 1: 937–943[3]Ye Z H, Varner J E. Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell, 1991, 3: 23–27[4]Coupe S A, Taylor J E, Isaac P G, Roberts J A. Identification and characterization of a proline-rich mRNA that accumulates during pod development in oilseed rape (Brassica napus L.). Plant Mol Biol, 1993, 23: 1223–1232[5]Choi D W, Song J Y, Kwon Y M, Kim S G. Characterization of a cDNA encoding a proline-rich 14 kD protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. Plant Mol Biol, 1996, 30: 973–982[6]Vignols F, Jose-Estanyol M, Caparros-Ruiz D, Rigau J, Puigdomenech P. Involvement of a maize proline-rich protein in secondary cell wall formation as deduced from its specific mRNA localization. Plant Mol Biol, 1999, 39: 945–952[7]Ulrich M, Nathalie R, Bernd M. StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline-rich proteins1. Plant Physiol, 2000, 122: 677–686[8]Fowler T J, Bernhardt C, Tierney M L. Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol, 1999, 121: 1081–1092[9]Bernhardt C, Tierney M L. Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol, 2000, 122: 705–714[10]Deutch C E, Winicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol, 1995, 27: 411–418[11]Goodwin W, Pallas J A, Jenkins G I. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol Biol, 1996, 31: 771–781[12]He C Y, Zhang J S, Chen S Y. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 2002, 104: 1125–1131[13]Showalter A M, Keppler B, Lichtenberg J, Gu D, Welch L R. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol, 2010, 153: 485–513[14]Gothandam K M, Nalini E, Karthikeyan S, Shin J S. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol, 2010, 72: 125–135[15]Zhang Y, Schläppi M. Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants. Planta, 2007, 227: 233–243[16]Xu D, Huang X, Xu Z Q, Schläppi M. The HyPRP gene EARLI1 has an auxiliary role for germinability and early seedling development under low temperature and salt stress conditions in Arabidopsis thaliana. Planta, 2011, 234: 565–577[17]Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber. Acta Biochim Biophys Sin, 2004, 36: 51–56[18]Li X-B(李学宝), Huang G-Q(黄耿青), Xu W-L(许文亮), Wang X-L(王秀兰), Wang H(汪虹). Isolation of the cotton genes that encoded cell wall proteins and their expression profile in cotton fibers. J Central China Norm Univ (Nat Sci) (华中师范大学学报•自然科学版), 2005, 39(4): 509–513 (in Chinese with English abstract)[19]Xu W-L(许文亮), Huang G-Q(黄耿青), Wang X-L(王秀兰), Wang H(汪虹), Li X-B(李学宝). Molecular characterization and expression analysis of five novel genes encoding proline-rich proteins in cotton (Gossypium hirsutum). Prog Biochem Biophys (生物化学与生物物理进展), 2007, 34(5): 509–517 (in Chinese with English abstract)[20]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743[21]Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019–3036[22]Li G, Tai F J, Zheng Y, Luo J, Gong S Y, Zhang Z T, Li X B. Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling. Plant Mol Biol, 2010, 74: 437–452[23]Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton Actin1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859–875[24]Priyanka B, Sekhar K, Sunita T, Reddy V D, Rao K V. Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol Genet Genomics, 2010, 283: 273–287[25]Priyanka B, Sekhar K, Reddy V D, Rao K V. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotech J, 2010, 8: 76–87[26]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salinity stress. Plant Cell, 1994, 6: 251–264[27]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997, 115: 327–334[28]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273[29]Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 2001, 25: 295–303[30]Tahtiharju S, Sangwan V, Monroy A F, Dhindsa R S, Borg M. The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta, 1997, 203: 442–447[31]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406[32]Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599[33]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin. Plant Biol, 2000, 3: 217–223[34]Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 2003, 15: 411–423 |
[1] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[2] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[3] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[4] | DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592. |
[5] | WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274. |
[6] | LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439. |
[7] | HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818. |
[8] | Hui LI, De-Fang LI, Yong DENG, Gen PAN, An-Guo CHEN, Li-Ning ZHAO, Hui-Juan TANG. Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf [J]. Acta Agronomica Sinica, 2020, 46(12): 1914-1922. |
[9] | LI Run-Zhi, JIN Qing, LI Zhao-Hu, WANG Ye, PENG Zhen, DUAN Liu-Sheng. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages [J]. Acta Agronomica Sinica, 2020, 46(11): 1810-1816. |
[10] | CHEN Xiao-Jing,LIU Jing-Hui,YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting. Effects of salt stress on physiological indexes and differential proteomics of oat leaf [J]. Acta Agronomica Sinica, 2019, 45(9): 1431-1439. |
[11] | LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364. |
[12] | TIAN Wen-Gang,ZHU Xue-Feng,SONG Wen,CHENG Wen-Han,XUE Fei,ZHU Hua-Guo. Ectopic expression of S-adenosylmethionine decarboxylase (GhSAMDC1) in cotton enhances salt tolerance in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2019, 45(7): 1017-1028. |
[13] | Ping LI,Wan-Wei HOU,Yu-Jiao LIU. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China [J]. Acta Agronomica Sinica, 2019, 45(2): 267-275. |
[14] | Hua-Ying MAO,Feng LIU,Wei-Hua SU,Ning HUANG,Hui LING,Xu ZHANG,Wen-Ju WANG,Cong-Na LI,Han-Chen TANG,Ya-Chun SU,You-Xiong QUE. A Sugarcane Phosphatidylinositol Transfer Protein Gene ScSEC14 Responds to Drought and Salt Stresses [J]. Acta Agronomica Sinica, 2018, 44(6): 824-835. |
[15] | Guang-Long ZHU,Cheng-Yu SONG,Lin-Lin YU,Xu-Bing CHEN,Wen-Fang ZHI,Jia-Wei LIU,Xiu-Rong JIAO,Gui-Sheng ZHOU. Alleviation Effects of Exogenous Growth Regulators on Seed Germination of Sweet Sorghum under Salt Stress and Its Physiological Basis [J]. Acta Agronomica Sinica, 2018, 44(11): 1713-1724. |
|