Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (09): 1576-1581.doi: 10.3724/SP.J.1006.2013.01576

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Generation and Characterization of PgPGIP1 Transgenic Wheat Plants with Enhanced Resistance to Take-All and Common Root Rot

YANG Li-Hua1,2,WANG Jin-Feng2,DU Li-Pu2,XU Hui-Jun2,WEI Xue-Ning2,LI Zhao2,MA Ling-Jian1,*,ZHANG Zeng-Yan2,*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 National Key Facility of Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-02-20 Revised:2013-06-09 Online:2013-09-12 Published:2013-07-09
  • Contact: 马翎健, E-mail: malingjian@nwsuaf.edu.cn; 张增艳, E-mail: zhangzengyan@caas.cn

Abstract:

Take-all disease is primarily caused by a soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt). The disease common root rot is mainly caused by fungal pathogen Bipolaris sorokiniana (teleomorph Cochliobolus sativus). Both of them are important diseases of wheat (Triticum aestivum L.)worldwide. PgPGIP1, a polygalacturonase-inhibiting protein from Panax ginseng, can reduce the infection of some fungal phytopathogens through inhibiting the polygalacturonase activity of the pathogens. In this study, the full-length coding sequence of PgPGIP1 gene was synthesized, and the gene transformation vector pA25-PgPGIP1 was constructed. In the expression vector pA25-PgPGIP1, the PgPGIP1 gene can be expressed highly in monocot plants driving by maize ubiquitin promoter. Embryo callus of Yangmai 18 was bombarded by the gold particle containing pA25-PgPGIP1. The transgenic wheat plants from T0 to T4 generations were subjected to PCR, RT-PCR, and Q-RT-PCR assays. Results showed that the PgPGIP1 gene was indeed introduced into four transgenic wheat lines, and inherited from T0 to T4 generations and expressed. After inoculation with Ggt and B. sorokiniana, the disease evaluations  showed that the four transgenic wheat lines expressing PgPGIP1 displayed an enhanced resistances to take-all and common root rot compared with untransformed Yangmai 18.

Key words: Polygalacturonase-inhibiting protein (PGIP) in Panax ginseng, Transgenic wheat plants, Take-all, Common root rot, Resistance

[1]Zhang X-S(张雪松), Cao Y-S(曹永胜), Cao K-Q(曹克强). Management of w heat soil-borne diseases under the conservative farming system. J Northwest Sci-Tech Univ A&F (Nat Sci Edn) (西北农林科技大学学报?自然科学版), 2005, 33(suppl): 47–48 (in Chinese with English abstract)



[2]Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt A Y, Sarniguet. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Mol Plant Pathol, 2011, 12: 839–854



[3]Guilleroux M, Osbourn A. Gene expression during infection of wheat roots by the ‘take-all’ fungus Gaeumannomyces graminis. Mol Plant Pathol, 2004, 5: 203–216



[4]Cook R J. Take-all of wheat. Physiol Mol Plant Pathol, 2003, 62: 73–86



[5]Gutteridge R J, Bateman G L, Todd A D. Variation in the effects of take-all disease on grain yield and quality of winter cereals in ?eld experiments†. Pest Manag Sci, 2003, 59: 215–224



[6]Yang M M, Mavrodi D V, Mavrodi O V, Bonsall R F, Parejko J A, Paulitz T C, Thomashow L S, Yang H T, Weller D M, Guo J H. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Biol Control, 2011, 101: 1481–1491



[7]Jiang W(蒋雯), He D(何德), Tao S(陶松). Research progress of resistance to w heat root rot using exogenous gene. J Hebei Agric Sci(河北农业科学), 2010, 14(2): 50–51(in Chinese with English abstract)



[8]Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K H. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol, 2002, 3:185–195



[9]Jia T-X(贾廷祥), Wu G-B(吴桂本), Liu C-D(刘传德). The present research situation and control countermeasure of root rots in wheat. Sci Agric Sin (中国农业科学), 1995, 28(3): 41–48 (in Chinese with English abstract)



[10]Matteo A D, Federici L, Mattei B, Salvi G, Johnson K A, Savino C, Lorenzo G D, Tsernoglou D, Cervone F. The crystal structure of polygalacturonase- inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA, 2003, 100: 10124–10128



[11]Jiang H(蒋豪), Tang H-R(汤浩茹). Advance in the research of molecular characterization, expression and regulation of a gene encoding the polygalacturonase-inhibiting protein (PGIP) of plant. Chin Agric Sci Bull (中国农学通报), 2008, 24(8): 63–68 (in Chinese with English abstract)



[12]Janni M, Sella L, Favaron F, Blechl A E, Lorenzo G D, Ovidio R D. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant-Microbe Interactions, 2008, 21: 171–177



[13]Albersheim P, Anderson A J. Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA, 1971, 68: 1815–1819



[14]Sathiyaraj G, Srinivasan S, Subramanium S, Kim Y J, Kim Y J, Kwon W S, Yang D C. Polygalacturonase inhibiting protein: isolation, developmental regulation and pathogen related expression in Panax ginseng C.A. Meyer. Mol Biol Rep, 2010, 37: 3445–3454



[15]Xu H-J(徐惠君), Pang J-L(庞俊兰), Ye X-G(叶兴国), Du L-P(杜丽璞), Li L-C(李连城), Xin Z-Y(辛志勇), Ma Y-Z(马有志), Chen J-P(陈剑平), Chen J(陈炯), Cheng S-H(程顺和), Wu H-Y(吴宏亚). Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin (作物学报), 2001, 27(6): 688–694 (in Chinese with English abstract)



[16]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8019



[17]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408



[18]Dong J-L (董建力), Hui H-X(惠红霞), Huang L-L(黄丽丽), Wang J-D(王敬东), Zhu Y-X(朱永兴), Chen X(陈孝), Ye X-G(叶兴国). Optimization of identification technique and germplasm screening of resistance to take-all in wheat. J Northwest A&F Univ (Nat Sci Edn) (西北农林科技大学学报?自然科学版), 2009, 37(3): 159–162 (in Chinese with English abstract)



[19]Bithell S L, Bulter R C, Harrow S, Mckay A, Cromey M G. Susceptibility to take-all of cereal and grass species, and their effects on pathogen inoculum. Ann Appl Biol, 2011, 159: 252–266



[20]Dong N, Liu X, Lu Y, Du L P, Xu H J, Liu H X, Xin Z Y, Zhang Z Y. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomic, 2010, 10: 215–226



[21]Dang L(党良), Wang A-Y(王爱云), Xu H-J(徐惠君), Zhu X-L(祝秀亮), Du L-P(杜丽璞), Shao Y-J(邵艳军), Zhang Z-Y(张增艳). Development and characterization of GmPGIP3 transgenic Yangmai 18 with enhanced resistance to wheat common root rot. Acta Agron Sin (作物学报), 2012, 38(10): 1833–1838 (in Chinese with English abstract)

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[7] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[8] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[9] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[10] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[11] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[12] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[13] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[14] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!