Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (04): 751-759.doi: 10.3724/SP.J.1006.2014.00751

• RESEARCH NOTES • Previous Articles    

Genetic Analysis of Traits Related to Plant Height in Ricinus communis L. Based on QTL Mapping

LIU Chen**,LU Jian-Nong**,YIN Xue-Gui*,BI Chuan,WEN Dan-You,ZHENG Jun,LIU Shuai,SHI Zhuo-Xing,and CHENG Yue-Xiang   

  1. Agricultural College of GuangDong Ocean University, Zhanjiang 524088, China
  • Received:2013-09-18 Revised:2014-01-12 Online:2014-04-12 Published:2014-01-12
  • Contact: 殷学贵, E-mail: yinxuegui@126.com

Abstract:

The traits related to plant height were analyzed with correlation, regression and QTL mapping in two F2 populations derived from crosses of YC2×YF1 and YC1×YF1 respectively. The results indicated that plant height (PH) was significantly and positively correlated with bearing height of primary raceme (PRH), length of main stem internode (MSIL) and main stem diameter (MSD) but not with node number of main stem (MSNN), PRH was significantly and positively correlated with MSNN, MSIL and MSD, MSNN and MSIL was significantly and negatively correlated with each other. In F2 population from a cross of YC2×YF1, five, four, six, three, and two QTLs for PH, PRH, MSNN, MSIL, and MSD were detected by QTLnetwork 2.0, which explained for 45.9%, 45.3%, 66.1%, 55.4%, and 12.6% of the phenotypic variation respectively. In F2 population from a cross of YC1×YF1, three, four, five, one and two QTLs for the five traits mentioned above were detected, which explained for 45.9%, 45.3%, 66.1%, 55.4%, and 12.6% of the phenotypic variation respectively. We concluded that the pleiotropy or linkage between QTLs results in the positive correlation between PH, PRH and MSIL, the additive effect was the main genetic component of PH, PRH, MSIL, and the epistatic effect is the main genetic component of MSNN and MSD. It suggested that PRH and MSIL should be used to select and predict PH indirectly in the early stage, more MSNN and shorter MSIL should be regarded as the target traits for high-yield breeding.

Key words: Ricinus communis L., Traits related to plant height, QTL mapping, Genetic analysis

[1]Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, MaeharaY, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17



[2]Peng J, Richards D E, Hartley N M, Munrphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou Snape J, Gale M D, Harberd N P. “Green Revolution” gene encode mutant bibberelin response modnlators. Nature, 1999, 400: 256–261



[3]杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht–B1b和Rht–D1b在中国小麦中的分布. 中国农业科学, 2006, 39: 1680–1688



Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y. Distribution of dwarfing genes Rht–B1b and Rht–D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin, 2006, 39: 1680–1688 (in Chinese with English abstract)



[4]嵇怡, 缪旻珉, 陈学好. 植物矮生性状的分子遗传研究进展. 分子植物育种, 2006, 4: 753–771



Ji Y, Miao M M, Chen X H. Progresses on the molecular genetics of dwarf character in plants. Mol Plant Breed, 2006, 4: 753–771 (in Chinese with English abstract)



[5]李卓坤, 谢全刚, 朱占玲, 刘金良, 韩淑晓, 田宾, 袁倩倩, 田纪春. 基于QTL定位分析小麦株高的杂种优势. 作物学报, 2010, 36: 771−778



Li Z K, Xie Q G, Zhu Z L, Liu J L, Han S X, Tian B, Yuan Q Q, Tian J C. Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin, 2010, 36: 771−778 (in Chinese with English abstract)



[6]杨芳萍, 夏先春, 张勇, 张晓科, 刘建军, 唐建伟, 杨学明, 张俊儒, 刘茜, 李式昭, 何中虎. 光周期和矮秆基因在不同国家小麦品种中的分布及其效应. 作物学报, 2012, 38: 1155−1166



Yang F P, Xia X C, Zhang Y, Zhang X K, Liu J J, Tang J W, Yang X M, Zhang J R, Liu Q, Li S Z, He Z H. Distribution of allelic variation for vernalization, photoperiod, and dwarfing genes and their effects on growth period and plant height among cultivars from major wheat producing countries. Acta Agron Sin, 2012, 38: 1155−1166 (in Chinese with English abstract)



[7]高奋明, 姜勇, 孔德伟, 李仕贵. 水稻株高的遗传控制及其在育种上的应用. 分子植物育种, 2005, 3: 87–93



Gao F M, Jiang Y, Kong D W, Li S G. Genetic control of plant height and its utilization in rice. Mol Plant Breed, 2005, 3: 87–93 (in Chinese with English abstract)



[8]邢永忠, 徐才国, 华金平, 谈移芳, 孙新立. 水稻株高和抽穗期基因的定位和分离. 植物学报, 2001, 43: 721–726



Xing Y Z, Xu C G, Hua J P, Tan Y F, Sun X L. Mapping and isolation of quantitative trait loci controlling plant height and heading date in rice. Acta Bot Sin, 2001, 43: 721–726 (in Chinese with English abstract)



[9]姜树坤, 黄成, 徐正进, 陈温福. 粳稻株高QTL与赤霉素和油菜素内酯合成及信号转导基因相关分析. 中国农业科学, 2010, 43: 2829–2938



Jiang S K, Huang C, Xu Z J, Cheng W F. Relationship between QTLs for plant height and its components and genes controlling gibberellin and brassinosteroid biosynthesis and their transduction in japonica rice (Oryza sativa L.). Sci Agric Sin, 2010, 43: 2829–2938 (in Chinese with English abstract)



[10]Lavanya C, Gopinath V. Inheritance studies for morphological characters and sex expression in pistillate lines of castor (Ricinus communis L.). Indian J Genet Plant Breed, 2008, 68: 275–282



[11]李金琴, 朱国立, 何智彪, 张智勇, 贾娟霞, 乔文杰, 李靖霞. 蓖麻矮秆性状基因遗传规律研究. 内蒙古农业科技, 2010, (1): 54–56



Li J Q, Zhu G L, He Z B, Zhang Z Y, Jia J X, Qiao W J, Li J X. Study on the genetic regularity of castor bean dwarf characters gene. J Inner Mongolia Agric Sci Tech, 2010, (1): 54–56 (in Chinese with English abstract)



[12]刘鹏. 蓖麻细胞色素P450基因RNAi植物表达载体构建及遗传转化的研究. 沈阳农业大学博士学位论文, 2012



Liu P. The Studies on Construction and Genetic Transformation of RNAi Plant Expression Rector Carrying Cytochrome P450 from Castor. PhD Dissertation of Shenyang Agricultural University, 2012 (in Chinese with English abstract)



[13]严兴初. 蓖麻种质资源描述规范和数据标准. 北京: 中国农业出版社. 2005. pp 12–19



Yan X C. Descriptions and data standard for castor (Ricinus communis L.). Beijing: China Agriculture Press, 2005. pp 12–19 (in Chinese)



[14]Lander E S, Green P. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[15]Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723



[16]赵彦宏, 朱军, 徐海明, 杨剑, 高用明, 宋佑胜, 石春海, 邢永忠. 基于QTL定位的水稻有效穗数杂种优势预测. 中国水稻科学, 2007, 21: 350–354



Zhao Y H, Zhu J, Xu H M, Yang J, Gao Y M, Song Y S, Shi C H, Xing Y Z. Predicting heterosis of effective panicle number per plant based on QTL mapping in rice. Chin J Rice Sci, 2007, 21: 350–354 (in Chinese with English abstract)



[17]高用明, 朱军, 宋佑胜, 何慈信, 石春海, 邢永忠. 水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析. 作物学报, 2004, 30: 849–854



Gao Y M, Zhu J, Song Y S, He C X, Shi C H, Xing Y Z. Use of Permanent F2 population to analyze epistasis and their Interaction effects with environments for QTLs controlling heading date in rice. Acta Agron Sin, 2004, 30: 849–854 (in Chinese with English abstract)



[18]张志勇, 黄育民, 张凯, 王侯聪, 江良荣. 水稻株高QTL定位及精确性分析. 厦门大学学报(自然科学版), 2008, 47(1): 116–121



Zhang Z Y, Huang Y M, Zhang K, Wang H C, Jiang L R. Detection of QTL for plant height in rice (Oryza sativa L.) and analysis of QTL mapping accuracy. J Xiamen Univ (Nat Sci), 2008, 47(1): 116–121 (in Chinese with English abstract)



[19]王岩, 李卓坤, 田纪春. 利用永久 F2 群体定位小麦株高的QTL. 作物学报, 2009, 35: 1038−1043



Wang Y, Li Z K, Tian J C. Detection of quantitative trait loci for plant height using an immortalized F2 population in wheat. Acta Agron Sin, 2009, 35: 1038−1043 (in Chinese with English abstract)



[20]郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位.作物学报, 2013, 39: 549–556



Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q. QTL identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 549–556 (in Chinese with English abstract)



[21]苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨. 利用永久群体在不同环境下定位黄瓜株高QTL. 中国农业科学, 2012, 45: 4552–4560



Miao H, Gu X F, Zhang S P, Zhang Z H, Huang S W, Wang Y. Detection of QTL for plant height in different environments using an RIL populution in cucumber. Sci Agric Sin, 2012, 45: 4552–4560 (in Chinese with English abstract)



[22]张维峰, 赵守贤. 国外蓖麻育种与遗传研究动态. 中国油料作物作物学报, 1988, (1): 90–92



Zhang W F, Zhao S X. Foreign breeding and genetic research trends of castor. Chin J Oil Crop Sci, 1988, (1): 90–92 (in Chinese)



[23]姚远, 李凤山, 陈永胜, 李金琴, 黄风兰, 王永佳. 国内外蓖麻研究动态. 内蒙古民族大学学报, 2009, 24(2): 172–174



Yao Y, Li F S, Chen Y S, Li J Q, Huang F L, Wang Y J. Research progress on castor. J Inner Mongolia Univ Nat, 2009, 24(2): 172–174 (in Chinese with English abstract)



[24]Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein–content, grain yield and thousand–kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032–1040



[25]张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35: 270–278



Zhang K P, Xu X B, Tian J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009, 35: 270–278 (in Chinese with English abstract)



[26]李文福, 刘宾, 彭涛, 袁倩倩, 韩淑晓, 田纪春. 利用DH和IF2两个群体进行小麦粒重、粒型和硬度的QTL分析. 中国农业科学, 2012, 45: 3453–3462



Li W F, Liu B, Pneg T, Yuan Q Q, Han S X, Tian J C. Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and Immortalized F2 population. Sci Agric Sin, 2012, 45: 3453–3462 (in Chinese with English abstract)



[27]覃鸿妮, 晏萌, 王召辉, 郭莹, 王辉, 孙海燕, 刘志斋, 蔡一林. 玉米籽粒中花色苷和黑色素含量的QTL分析. 作物学报, 2012, 38: 275–284



Qin H N, Yan M, Wang Z H, Guo Y, Wang H, Sun H Y, Liu Z Z, Cai Y L. QTL mapping for anthocyanin and melanin contents in maize kernel. Acta Agron Sin, 2012, 38: 275–284 (in Chinese with English abstract)



[28]范冬梅, 杨振, 马占洲, 曾庆力, 杜翔宇, 蒋洪蔚, 刘春燕, 韩冬伟, 栾怀海, 裴宇峰, 陈庆山, 胡国华. 多环境条件下大豆倒伏性相关形态性状的QTL分析. 中国农业科学, 2012, 45: 3029–3039



Fan D M, Yang Z, Ma Z Z, Zeng Q L, Du X Y, Jiang H W, Liu C Y, Han D W, Luan H H, Pei Y F, Chen Q S, Hu G H. QTL analysis of lodging-resistance related traits in soybean in different environments. Sci Agric Sin, 2012, 45: 3029–3039 (in Chinese with English abstract)

[1] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[2] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[3] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[4] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[5] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[6] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[7] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[8] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[12] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[13] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[14] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[15] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!