Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (07): 1098-1104.doi: 10.3724/SP.J.1006.2015.01098

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationship between Lignin Synthesis and Lodging Resistance at Seedlings Stage in Soybean Intercropping System

ZOU Jun-Lin1,LIU Wei-Guo1,*,YUAN Jin1,JIANG Tao2,YE Su-Qin1,DENG Yu-Chuan1,YANG Chen-Yu1,LUO Ling1,YANG Wen-Yu1,*   

  1. 1 College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130, China; 2 College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
  • Received:2015-01-15 Revised:2015-04-02 Online:2015-07-12 Published:2015-05-04

Abstract:

Stem physical characteristics are closely related to the crop lodging, increasing stem strength is available to resolve the problem of lodging.To explore the effect of intercropping soybean stem strength on the mechanism of shade tolerance and lodging resistance, we studied the relationship between lignin synthesis and lodging resistance. Three soybean cultivars with different shade tolerances were planted in maize–soybean intercropping and soybean monocropping, respectively. The lignin content, activities of phenylalanine ammonia-lyase (PAL), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), peroxidase (POD) which involved in lignin synthesis in stem as well as the snapping resistance and lodging resistance index were determined at seedlings stage. The results showed that the intercropping soybean lodged seriously, the snapping resistance, lodging resistance index, lignin content and activities of the four enzymes were significantly lower than those of monocropping soybean at seedlings stage. The three soybean cultivars were affected differently by intercropping condition, the reduction of snapping resistance of Nandou 12 with strong shade tolerance was the least, its lodging resistance index, lignin content and activities of the four enzymes (PAL, 4CL, CAD, POD) also maintained a relatively high level. The lignin content of intercropping soybean seedling stem was significantly positively correlated with the snapping resistance (r = 0.890, P < 0.01) and the activities of 4CL, CAD, and significantly negatively correlated with the actual lodging percentage(r = –0.889, P < 0.01). In a word, the high activities of 4CL and CAD in the soybean stem provide a enzymatic basis to maintain higher lignin content, resulting in higher stem strength and higher lodging resistance in intercropping condition.

Key words: Soybean, Intercropping, Lodging resistance, Lignin, Enzyme activity

[1]杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展套作大豆, 振兴大豆产业. 大豆科学, 2008, 27: 1–7



Yang W Y, Yong T W, Ren W J, Fan G Q, Mu J Y, Lu X L. Develop relay–planting soybean, revitalize soybean industry. Soybean Sci, 2008, 27: 1–7 (in Chinese with English abstract)



[2]Liu W G, Zou J L, Zhang J, Yang F, Wan Y, Yang W Y. Evaluation of soybean (Glycine max) stem vining in maize-soybean relay strip intercropping system. Plant Prod Sci, 2015, 18: 69–75



[3]王竹, 杨文钰, 伍晓燕, 吴其林. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008, 19: 323–329



Wang Z, Yang W Y, Wu X Y, Wu Q L. Effect of maize plant type and planting width on the early morphological characters and yield of interplanted soybean. Chin J Appl Ecol, 2008, 19: 323–329 (in Chinese with English abstract)



[4]刘卫国, 蒋涛, 佘跃辉, 杨峰, 杨文钰. 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探. 中国油料作物学报, 2011, 33: 141–146



Liu W G, Jiang T, She Y H, Yang F, Yang W Y. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stag. Chin J Oil Crop Sci, 2011, 33: 141–146 (in Chinese with English abstract)



[5]刘卫国, 宋颖, 邹俊林, 张云松, 梅林森, 蒋涛, 杨文钰. LED灯模拟作物间作套种群体内光环境的设计与应用. 农业工程学报, 2011, 27(8): 288–292



Liu W G, Song Y, Zou J L, Zhang Y S, Mei L S, Jiang T, Yang W Y. Design and effect of LED simulated illumination environment on intercropping population. Transact CSAE, 27(8): 288–292 (in Chinese with English abstract)



[6]梁莉, 郭玉明. 作物茎秆生物力学性质与形态特性相关性研究. 农业工程学报, 2008, 24(7): 1–6



Liang L, Guo Y M. Correlation study of biomechanical properties and morphological characteristics of crop stalks. Trans CSAE, 24(7): 1–6 (in Chinese with English abstract)



[7]Wang J, Zhu J M, Lin Q Q, Li X J, Teng N J, Li Z S, Li B, Zhang A M, Lin J X. Effects of stem structure and cell wall components on bending strength in wheat. Chin Sci Bull, 2006, 51: 815–823



[8]罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27: 2346–2353



Luo M C, Tian C T, Li X J, Lin J X. Relationship between morpho–anatomical traits together with chemical components and lodging resistance of stem in rice (Oryza sativa L.). Acta Bot Boreal–Occident Sin, 2007, 27: 2346–2353 (in Chinese with English abstract)



[9]周蓉. 大豆抗倒伏性评价体系的建立及主要农艺性状QTL定位. 华中农业大学博士学位论文, 湖北武汉, 2009



Zhou R. Evaluation of Lodging Resistance and QTL Mapping of Some Agronomic Traits in Soybean (Glycine max L.). PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2009 (in Chinese with English abstract)



[10]李伟, 熊谨, 陈晓阳. 木质素代谢的生理意义及其遗传控制研究进展. 西北植物学报, 2003, 23: 675–681



Li W, Xiong J, Chen X Y. Advances in the research of physiological significances and genetic regulation of lignin in metabolism. Acta Bot Boreal-Occident Sin, 2003, 23: 675–681 (in Chinese with English abstract)



[11]马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展. 作物杂志, 2012, (2): 10–15



Ma Y H, Wang Q X. Advances of research on relationship between traits and lodging resistance of stem in corn. Crops, 2012, (2): 10–15 (in Chinese)



[12]吴其林, 王竹, 杨文钰. 苗期遮荫对大豆茎秆形态和物质积累的影响. 大豆科学, 2007, 26: 868–872



Wu Q L, Wang Z, Yang W Y. Seedling shading affects morphogenesis and substance accumulation of stem in soybean. Soybean Sci, 2007, 26: 868–872 (in Chinese with English abstract)



[13]向达兵, 郭凯, 雷婷, 于晓波, 罗庆明, 杨文钰. 磷钾营养对套作大豆茎杆形态和抗倒性的影响. 中国油料作物学报, 2010, 32: 395–402



Xiang D B, Guo K, Lei T, Yu X B, Luo Q M, Yang W Y. Effects of phosphorus and potassium on stem characteristics and lodging resistance of relay cropping soybean. Chin J Oil Crop Sci, 2010, 32: 395–402 (in Chinese with English abstract)



[14]Tripathi S C, Sayre K D. Growth and morphology of wheat culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res, 2003, 84: 271–290



[15]刘唐兴, 官春云. 油菜倒伏指数和茎秆生化成分及农艺性状的灰色关联分析. 中国油料作物学报, 2008, 30: 152–156



Liu T X, Guan C Y. Grey relational analysis between lodging index and biochemistry components of stem, agronomic characteristics in rapeseed (Brassica napus L). Chin J Oil Crop Sci, 2008, 30: 152–156 (in Chinese with English abstract)



[16]Ookawa T, Ishihara K V. Difference of cell wall components affecting the ding stress of the culm in relating to lodging resistance in paddy rice. Jpn J Crop Sci, 1993, 62: 378–384



[17]邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 60–61



Qiu L J, Chang R Z. Descriptors and Date Standard for Soybean (Glycine spp.). Beijing: China Agriculture Press, 2006. pp 60–61 (in Chinese)



[18]周蓉, 王贤智, 张晓娟, 沙爱华, 吴学军, 涂赣英, 邱德珍, 周新安. 大豆种质倒伏抗性评价方法研究. 大豆科学, 2007, 26: 485–489



Zhou R, Wang X Z, Zhang X J, Sha A H, Wu X J, Tu G Y, Qiu D Z, Zhou X A. Evaluation methed of lodging resistance in soybean germplasm. Soybean Sci, 2007, 26: 485–489 (in Chinese with English abstract)



[19]黄中文, 赵团结, 喻德跃, 陈受宜, 盖钧镒. 大豆抗倒伏性的评价指标及其QTL分析. 作物学报, 2008, 34: 605–611



Huang Z W, Zhao T J, Yu D X, Chen S Y, Gai J Y. Lodging resistance indices and related QTLs in soybean. Acta Agron Sin, 2008, 34: 605–611 (in Chinese with English abstract)



[20]Bhaskara-Reddy M V, Arul J, Angers P, Coutuer L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improve seed quality. J Agric Food Chem, 1999, 47: 1208–1216



[21]张志良, 瞿伟菁. 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2003. pp 277–278



Zhang Z L, Qu W J. Experimental Guide for Plant Physiology, 3nd Edn. Beijing: Higher Education Press, 2003. pp 277–278 (in Chinese)



[22]Knobloch K H, Hahlbrock K. Isoenzymes of P-coumarate: CoA ligase from cell suspension cultures of Glycine max. Eur J Biochem, 1975, 52: 311–320



[23]Morrison T A, Kessler J R, Hatfield R D, Buxton D R. Activity of two lignin biosynthesis enzymes dunng development of a maize internode. J Sci Food Agric, 1994, 65: 133–139



[24]熊庆娥. 植物生理学实验教程. 成都: 四川科学技术出版社, 2008. pp 92–93



Xiong Q E. Experimental Course for Plant Physiology. Chengdu: Sichuan Scientific and Technical Publishers, 2008. pp 92–93 (in Chinese)



[25]周蓉, 王贤智, 陈海峰, 张晓娟, 单志慧, 吴学军, 蔡淑平, 邱德珍, 周新安, 吴江生. 大豆倒伏性及其相关性状的QTL分析. 作物学报, 2009, 35: 57–65



Zhou R, Wang X Z, Chen H F, Zhang X J, Shan Z H, Wu X J, Cai S P, Qiu D Z, Zhou X A, Wu J S. QTL analysis of lodging and related traits in soybean. Acta Agron Sin, 2009, 35: 57–65 (in Chinese with English abstract)



[26]Baucher M, Monties B, Van Montagu M, Boerjan W. Biosynthesis and genetic engineer in lignin. Critical Rev Plant Sci, 1998, 17: 125–197



[27]Berry P M, Spink J, Sterling M, Picker A A. Methods for rapidly measuring the lodging resistance of wheat cultivars. J Agron Crop Sci, 2003, 189: 390–401



[28]Boerjanl W, Ralph J, Baucher M. Lignin biosynthesis. Plant Biol, 2003, 54: 519–546



[29]王海建, 陈华保, 蒋春先, 马方芳, 李庆, 杨文钰, 杨群芳, 徐翔. 大豆蚜胁迫对不同抗蚜性大豆材料生理指标的影响. 大豆科学, 2013, 32: 276–278



Wang H J, Chen H B, Jiang C X, Ma F F, Li Q, Yang W Y, Yang Q F, Xu X. Effects of Aphis Glycines Matsumura stress on physiological index of soybean varieties with different aphid resistance, Soybean Sci, 2013, 32: 276–278 (in Chinese with English abstract)



[30]闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群. 套作遮荫条件下烯效唑对大豆壮苗机理的研究. 中国油料作物学报, 2011, 33: 259–264



Yan Y H, Yang W Y, Zhang X Q, Chen X L, Chen Z Q. Improve soybean seedling growth by uniconazole under shading by corn in relay strip intercropping system. Chin J Oil Crop Sci, 2011, 33: 259–264 (in Chinese with English abstract)

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[14] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[15] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!