[1]Okuley J, Lightner J, Feldmann K Yadav N, Lark E, Browseai J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6: 147–158
[2]Terés S, Barceló-Coblijn G, Benet M, lvarez R A, Bressani R, Halver J E, Escriba P V. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA, 2008, 105: 13811–13816
[3]Wijesundera C, Ceccato C, Fagan P, Zhiping S, Burton W, Salisbury P. Canola quality Indian mustard oil (Brassica juncea) is more stable to oxidation than conventional Canola oil (Brassica napus). J Am Oil Chem Soc, 2008, 85: 693–699
[4]Hu X, Sullivan-Gilbert M, Gupta M, Gupta M, and Thompson S A. Mapping of the loci controlling oleic and linolenic acid contents and development of FAD2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497–507
[5]Tang G Q, Novitzky W P, Carol Griffin H, Huber S C, Dewey R E. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J, 2005, 44: 433–446
[6]Zhang D, Pirtle I L, Park S J, Nampaisansuk M, Neogi P, Wanjie S W, Pirtle R M, Kent D. C. Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem, 2009, 47: 462–471
[7]Jung S, Powell G, Moore K. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811
[8]Jin U H, Lee J W, Chung Y S. Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci, 2001, 161: 935–941
[9]Jung J H, Hyojin K, Young S G, Saet B L, Cheol G H, Hyun U K, Mi C S. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep, 2011, 30: 1881–1892
[10]Xiao G, Zhang Z Q, Yin C F, Liu R Y, Wu X M, Tan T L, Chen S Y, Lu C M, Guan C Y. Characterization of the promoter and 5′-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene, 2014, 545: 45–55
[11]Xiong Z, Gaeta R T, Pires J C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA, 2011, 108: 7908–7913
[12]Yang Q Y, FanC C, Guo Z H, Qin J, Wu J Z, Li Q Y, Fu T D, Zhou Y M. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet, 2012, 125: 715–729
[13]Lee K R, Sohn S I, Jung J H, Kima S H, Roha K H, Kima J B, Suhb M C, Kim H U. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene, 2013, 531: 253–262
[14]陈苇, 李劲峰, 董云松, 李根泽, 寸守铣, 王敬乔. 甘蓝型油菜Fad2基因的RNA干扰及无筛选标记高油酸含量转基因油菜新种质的获得. 植物生理与分子生物学学报, 2006, 32: 665–671
Chen W, Li J F, Dong Y S, Li G Z, Cun S X, Wang J Q. Interferring of Fad2 gene using RNAi in Brassica napus and obtaining new germplasm of high oleic acid canola with no marker. Acta Phytophysiol Sin, 2006, 32: 665–671
[15]肖钢, 张宏军, 彭琪, 官春云. 甘蓝型油菜油酸脱氢酶基因(FAD2)多个拷贝的发现及分析. 作物学报, 2008, 34: 1563–1568
Xiao G, Zhang H J, Peng Q, Guan C Y. Screening and analysis of mutiple copy of oleate desaturase gene (FAD2) in Brassica napus. Acta Agron Sin, 2008, 34: 1563–1568
[16]Kiefer E, Heller W, Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep, 2000, 18: 33–39
[17]高建芹, 浦惠明, 龙卫华, 胡茂龙, 戚存扣. 高油酸甘蓝型油菜油酸积累动态. 中国油料作物学报, 2012, 34: 359–365
Gao J Q, Pu H M, Long W H, Hu M L, Qi C K. Dynamics of oleic acid conents in organs of high-oleic rapeseed lines. Chin J of Oil Crop Sci, 2012, 34: 359–365
[18]Vicente-Carbajosa J, Moose S P, Parsons R L, and Robert J. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA, 1997, 94: 7685–7690
[19]Ezcurra I, Wycliffe P, Nehlin L. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J, 2000, 24: 57–66
[20]Parra G, Bradnam K, Rose A B. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucl Acids Res, 2011, 39: 5328–5337
[21]Wasternack C, Hause B. Jasmonates: an update on biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot, 2007,100: 681–697
[22]Xu D, McElroy D, Thornburg R W, Ray W. Systemic induction of a potato pin2 promoter by wounding, methyl iasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol, 1993, 22: 573–588
[23]Jusoh M, Loh S H, Chuah T S. Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res, 2015, 9: 14–20
[24]Gundlach H, Müller M J, Kutchan T M, Zenk M H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA, 1992, 89: 2389–2393
[25]Mangas S, Bonfill M, Osuna L, Moyano E, Tortoriello J, Cusido R M, Piñol M T, Palazón J. The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 2006, 67: 2041–2049
[26]Ren C G, Dai C C. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol, 2012, 12: 128
[27]Rouster J, Leah R, Mundy J. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J, 1997, 11: 513–523 |