Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (11): 1663-1670.doi: 10.3724/SP.J.1006.2015.01663

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression of BnFAD2-C1 Gene Involved in Brassica napus and Analysis of Transcription Regulation Elements

LIU Fang**,LIU Rui-Yang**,PENG Ye,GUAN Chun-Yun*   

  1. College of Agronomy, Hunan Agricultural University / National Oilseed Crops Improvement Center in Hunan, Changsha 410128, China
  • Received:2015-04-04 Revised:2015-07-20 Online:2015-11-12 Published:2015-08-11

Abstract:

Fatty acid desaturase gene (FAD2) is a key factor in regulating oleic acid content. There are four copies located on chromosomes A1, C1, A5, and C5 in Brassica napus. One copy containing 1155 bp open reading frame was cloned with previous research method and named as BnFAD2-C1 which was location on chromosome C1 based on the genome database information of oleracea and oilseed. Then the untranslated regions (UTR) of 5′and 3′end with 175 bp and 212 bp length respectively were cloned by RACE (rapid-amplification of cDNA ends) technique. The expression pattern of BnFAD2-C1 gene was identified using quantity PCR technique, showing a seed-specific inducible expression in mid developmental seeds and a background-level expression in root, flower and siliqua wall. The promoter and intron region were also cloned and analyzed using PLACE and PlantCARE websites to predict some potential cis-elements in regulating BnFAD2-C1 gene transcription. At the same time, jasmonic acid (JA) was inferred to make certain contributions to regulate BnFAD2-C1 gene expression showing a changeable expression quantity when treated with Jasmonic acid.

Key words: Brassica napus, BnFAD2-C1, RACE, Bioinformatics analysis, Jasmonic acid

[1]Okuley J, Lightner J, Feldmann K Yadav N, Lark E, Browseai J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6: 147–158



[2]Terés S, Barceló-Coblijn G, Benet M, lvarez R A, Bressani R, Halver J E, Escriba P V. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA, 2008, 105: 13811–13816



[3]Wijesundera C, Ceccato C, Fagan P, Zhiping S, Burton W, Salisbury P. Canola quality Indian mustard oil (Brassica juncea) is more stable to oxidation than conventional Canola oil (Brassica napus). J Am Oil Chem Soc, 2008, 85: 693–699



[4]Hu X, Sullivan-Gilbert M, Gupta M, Gupta M, and Thompson S A. Mapping of the loci controlling oleic and linolenic acid contents and development of FAD2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497–507



[5]Tang G Q, Novitzky W P, Carol Griffin H, Huber S C, Dewey R E. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J, 2005, 44: 433–446



[6]Zhang D, Pirtle I L, Park S J, Nampaisansuk M, Neogi P, Wanjie S W, Pirtle R M, Kent D. C. Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem, 2009, 47: 462–471



[7]Jung S, Powell G, Moore K. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811



[8]Jin U H, Lee J W, Chung Y S. Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci, 2001, 161: 935–941



[9]Jung J H, Hyojin K, Young S G, Saet B L, Cheol G H, Hyun U K, Mi C S. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep, 2011, 30: 1881–1892



[10]Xiao G, Zhang Z Q, Yin C F, Liu R Y, Wu X M, Tan T L, Chen S Y, Lu C M, Guan C Y. Characterization of the promoter and 5′-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene, 2014, 545: 45–55



[11]Xiong Z, Gaeta R T, Pires J C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA, 2011, 108: 7908–7913



[12]Yang Q Y, FanC C, Guo Z H, Qin J, Wu J Z, Li Q Y, Fu T D, Zhou Y M. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet, 2012, 125: 715–729



[13]Lee K R, Sohn S I, Jung J H, Kima S H, Roha K H, Kima J B, Suhb M C, Kim H U. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene, 2013, 531: 253–262



[14]陈苇, 李劲峰, 董云松, 李根泽, 寸守铣, 王敬乔. 甘蓝型油菜Fad2基因的RNA干扰及无筛选标记高油酸含量转基因油菜新种质的获得. 植物生理与分子生物学学报, 2006, 32: 665–671



Chen W, Li J F, Dong Y S, Li G Z, Cun S X, Wang J Q. Interferring of Fad2 gene using RNAi in Brassica napus and obtaining new germplasm of high oleic acid canola with no marker. Acta Phytophysiol Sin, 2006, 32: 665–671



[15]肖钢, 张宏军, 彭琪, 官春云. 甘蓝型油菜油酸脱氢酶基因(FAD2)多个拷贝的发现及分析. 作物学报, 2008, 34: 1563–1568



Xiao G, Zhang H J, Peng Q, Guan C Y. Screening and analysis of mutiple copy of oleate desaturase gene (FAD2) in Brassica napus. Acta Agron Sin, 2008, 34: 1563–1568



[16]Kiefer E, Heller W, Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep, 2000, 18: 33–39



[17]高建芹, 浦惠明, 龙卫华, 胡茂龙, 戚存扣. 高油酸甘蓝型油菜油酸积累动态. 中国油料作物学报, 2012, 34: 359–365



Gao J Q, Pu H M, Long W H, Hu M L, Qi C K. Dynamics of oleic acid conents in organs of high-oleic rapeseed lines. Chin J of Oil Crop Sci, 2012, 34: 359–365



[18]Vicente-Carbajosa J, Moose S P, Parsons R L, and Robert J. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA, 1997, 94: 7685–7690



[19]Ezcurra I, Wycliffe P, Nehlin L. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J, 2000, 24: 57–66



[20]Parra G, Bradnam K, Rose A B. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucl Acids Res, 2011, 39: 5328–5337



[21]Wasternack C, Hause B. Jasmonates: an update on biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot, 2007,100: 681–697



[22]Xu D, McElroy D, Thornburg R W, Ray W. Systemic induction of a potato pin2 promoter by wounding, methyl iasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol, 1993, 22: 573–588



[23]Jusoh M, Loh S H, Chuah T S. Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res, 2015, 9: 14–20



[24]Gundlach H, Müller M J, Kutchan T M, Zenk M H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA, 1992, 89: 2389–2393



[25]Mangas S, Bonfill M, Osuna L, Moyano E, Tortoriello J, Cusido R M, Piñol M T, Palazón J. The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 2006, 67: 2041–2049



[26]Ren C G, Dai C C. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol, 2012, 12: 128



[27]Rouster J, Leah R, Mundy J. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain.  Plant J, 1997, 11: 513–523

[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[3] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[4] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[5] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[6] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[7] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[8] RUAN Jun-Mei, ZHANG Jun, LIU You-Hong, DONG Wen-Jun, MENG Ying, DENG Ai-Xing, YANG Wan-Shen, SONG Zhen-Wei, ZHANG Wei-Jian. Effects of free air temperature increase on nitrogen utilization of rice in northeastern China [J]. Acta Agronomica Sinica, 2022, 48(1): 193-202.
[9] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[10] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[11] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[12] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[13] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[14] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[15] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!