Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (02): 159-169.doi: 10.3724/SP.J.1006.2016.00159

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

An Integrated Genetic Linkage Map from Three F2 Populations of Cultivated Peanut (ArachishypogaeaL.)

GUO Jian-Bin1,2,HUANG Li1,CHENG Liang-Qiang1,CHEN Wei-Gang1,REN Xiao-Ping1,CHEN Yu-Ning1,ZHOU Xiao-Jing1,SHEN Jin-Xiong2,JIANGHui-Fang1,*   

  1. 1Oil Crops Research Institute of China Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062,China; 2College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070,China
  • Received:2015-06-24 Revised:2015-11-20 Online:2016-02-12 Published:2015-12-07
  • Supported by:

    This study was supported by the Natural Science Foundation of China(31271764, 31371662, 31471534, 31461143022),the National Key Basic Research Program of China(973 Program),the Crop Germplasm Resources Protection Project(NB2010-2130135-28B),and the NationalModern Agro-industry Technology System (CARS-14-peanut germplasm resource evaluation).

Abstract:

The genetic linkage map is important for peanut molecular breeding. Construction of integrating genetic linkage map using multiple populations is an effective approach to increase the marker density of map. Three maps were constructed with three F2 populations, respectively in the present study. Based on anchored SSR markers in the three maps, we constructed anew map with 792 SSR loci and total map distance of 2079.5cM. The length of linkage groups varied from59.1 to175.8cM, and the number ofmarkers wasfrom20 to 66 inthe integrated linkages groups.Comparingthe intervals of QTLslinked to the pod size and seed size in the three F2 populations withthe markers in the integrated linkage groups, all the QTLs linked to the pod size and seed size could be found in the integrated map. Some intervals of QTLs had more markers in the integrated map than in the F2 linkage groups in the present study. The markers in the intervals of QTLs of the integrated map could be used for fine mapping.

Key words: Cultivated peanut, SSR, Integrated genetic mapping

[1]洪彦彬, 梁炫强,陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建.作物学报,2009,35:395–402



Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, and W S J. Construction of genetic linkage map in peanut (Arachishypogaea L.) cultivars.ActaAgron Sin, 2009,35:395–402(in Chinese with English abstract)



[2]姜慧芳,陈本银,任小平,廖伯寿,雷永,傅廷栋,马朝芝, Mace E, Crouch J H.利用重组近交系群体检测花生青枯病抗性SSR标记.中国油料作物学报,2007,29:26–30



Jiang H F, Chen B Y, Ren X P, Liao B S, Lei Y, Fu T D, Ma C Z, mace E, Crouch J H. Identification of SSR markers linked to bacterial wilt resistance of peanut with RILs. Chin J Oil Crop Sci, 2007,29:26–30(in Chinese with English abstract)



[3]彭文舫,姜慧芳,任小平,吕建伟,赵新燕,黄莉. 花生AFLP遗传图谱构建及青枯病抗性QTL分析.华北农学报, 2010, 25: 81–86



Peng W F, Jiang H F, Ren X P, Lü J W, Zhao X Y, Huang L. Construction of AFLP genetic linkage map and detection of QTLs for bacterial Wilt résistance in peanut (ArachishypogaeaL.). Acta Agric Boreali Sin, 2010, 25(6): 81–86(in Chinese with English abstract)



[4]Qin H,Fene S P, Chen C,Guo Y F, Knapp S, Culbreath A, He G H, Wang M L, Zhang X Y, Horlbrook C C, Ozias-Akins P, Guo B Z. An integrated genetic linkage map of cultivated peanut (ArachishypogaeaL.) constructed from two RIL populations. Theor Appl Genet, 2012, 124: 653–664



[5]Gautami B, Ravi K,Narasu M L, Hoisington D A, Varshney R K.. Novel set of groundnut SSR markers for germplasm analysis and inter-specific transferability. Int J Integr Biol, 2009, 7: 100–106



[6]张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学博士学位论文,浙江杭州, 2010



Zhang X Y. Inheritance of Main Traits Related to Yield, Quality and Disease Resistance and Their QTLs Mapping in Peanut (Arachishypogaea L.). PhD Dissertation of Zhejiang University, Hangzhou, China, 2010 (in Chinese with English abstract)



[7]Bravo JP, Hoshino AA, Angelici CMLCDLCR, Gimenes MA.Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genet Mol Biol, 2006,29:516–524



[8]Cuc L, Mace E, Crouch J, Quang V, Long T, Varshney R. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (ArachishypogaeaL.). BMC Plant Biol, 2008,8:55



[9]Gimenes M, Hoshino A, BarbosaA, Palmieri D, Lopes C. Characterization and transferability of microsatellite markers of the cultivated peanut (ArachishypogaeaL.). BMC Plant Biol, 2007,7:9



[10]He G, Meng R, Newman M, Gao G, Pittman R, Prakash CS.Microsatellites as DNA markers in cultivated peanut (Arachishypogaea L.). BMC Plant Biol, 2003,3:3



[11]Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B. Utility of EST-derived SSR in cultivated peanut (Arachishypogaea L.)andArachis wild species. BMC Plant Biol, 2009,9:35



[12]Varshney R, Bertioli D, Moretzsohn M, Vadez V, Krishnamurthy L,Aruna R, Nigam S, Moss B, Seetha K, Ravi K, The first SSR-based genetic linkage map for cultivated groundnut (ArachishypogaeaL.). Theor Appl Genet, 2009, 118: 729–739



[13]Wang H,Penmetsa R V, Yuan M, Gong L, Zhao Y, Guo B, Farmer A D, Rosen B D, Gao J, Isobe S, Bertioli D J, Varshney R K, Cook D R, He G. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (ArachishypogaeaL.). BMC Plant Biol, 2012, 12: 10



[14]ShirasawaK,Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M,Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80



[15]Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C M, Thudi M, Pandey M K, Rami J F, Fonce'ka D, Gowda M V C, Qin H D. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013, 20: 173–184



[16]Sujay V, Gowda M, Pandey M, Bhat R, Khedikar Y, Nadaf H, Gautami B, SarvamangalaC, Lingaraju S, Radhakrishan T. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachishypogaea L.).Mol Breed, 2012, 30:773–788



[17]Song Q J,Marek L F, ShoemakerR C, Lark K G, ConcibidoVC,Delannay X, Specht J E, CreganP B. A new integrated genetic linkage map of the soybean.Theor Appl Genet, 2004, 109: 122–128



[18]Hong YB, Liang XQ, Chen XP, LinKY, Zhou GY, Li SX, Liu HY. Genetic differences in peanut cultivated types (Arachishypogaea L.) revealed by SSR polymorphism. Mol Plant Breed, 2008, 6: 71–78



[19]张新友,韩锁义,徐静,严玫,刘华,汤丰收,董文召,黄冰艳.花生主要品质性状的QTLs定位分析. 中国油料作物学报, 2012, 34: 311–315



Zhang X Y, Han S Y, Xu J, Yan M. Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachishypogaea L.).Chin J Oil Crop Sci, 2012, 34: 311–315(in Chinese with English abstract)



[20]王强,张新友,汤丰收,董文召,徐静.基于SRAP分子标记的栽培种花生遗传连锁图谱构建. 中国油料作物学报, 2010, 32:374–378



Wang Q, Zhang X Y, Tang F S. Dong W Z,Xu J. Construction of genetic linkage map of peanut(Arachishypogaea L.)based on SRAP markers. Chin J Oil CropSci, 2010, 32:374–378(in Chinese with English abstract)



[21]巩鹏涛,木金贵,赵金荣,王晓玲,白羊年,方宣钧.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合.分子植物育种,2006, 4:309–316



Gong P T, Mu J G, Zhao J R, Wang X L, Bai Y N, Fang X J. An integrated soybean genetic linkage map comprising 315 SSRs and 40 AFLPs.Mol Plant Breed, 2006, 4: 309–316(in Chinese with English abstract)



[22]韩柱强,高国庆,韦鹏霄,唐荣华,钟瑞春. 利用SSR标记分析栽培种花生多态性及其亲缘关系.花生学报,2003,32:295–300



Han Z Q, Gao G Q, Wei P X, Tang R H, Zhong R C.Analysis of DNA polymorphism and genetic relationships in cultivated peanut(Arachishypogaea L.) using microsatellite markers.J Peanut Sci, 2003,32:295–300(in Chinese with English abstract)

[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[7] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[8] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[9] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[10] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[11] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[12] Jian-Bin GUO,Bei WU,Wei-Gang CHEN,Li HUANG,Yu-Ning CHEN,Xiao-Jing ZHOU,Huai-Yong LUO,Nian LIU,Xiao-Ping REN,Hui-Fang JIANG. Stability of major fatty acids contents of peanut varieties grown in different ecological regions [J]. Acta Agronomica Sinica, 2019, 45(5): 676-682.
[13] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[14] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[15] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!