Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (02): 180-189.doi: 10.3724/SP.J.1006.2016.00180

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity and Association Analysis of Agronomic Characteristics with SSR Markers in Hulless Barley

MENG Ya-Xiong1,2,MENG Yi-Lin1,2,WANG Jun-Cheng1,2,SI Er-Jing1,2,ZHANG Hai-Juan1,2,REN Pan-Rong1,2,MA Xiao-Le1,2,LI Bao-Chun1,3,YANG Ke1,2,WANG Hua-Jun1,2,*   

  1. 1 Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China; 2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 3College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2015-07-03 Revised:2015-11-20 Online:2016-02-12 Published:2015-12-07
  • Contact: 王化俊, E-mail: whuajun@yahoo.com, Tel: 13809315256 E-mail:yxmeng1@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31460347), Gansu Provincial Department of Finance Research Operating Expenses (035-041047), and the Special Program of Modern Agro-industry Technology System (CARS-05).

Abstract:

The objectives of this study were to find molecular markers associated with yield-related traits and guide parental combination in molecular marker-assisted breeding and hybrid breeding of hulless barley (Hordeum vulgare L. var. nudum HK. f.). A natural hulless barley population composed of 108 parental varieties/lines was screened with 92 SSR markers, in which 48 markers were polymorphic. Population structure was analyzed based on the polymorphic SSR data and association between markers and five agronomic traits were performed in TASSEL GLM (general linear model) and MLM (mixed linear model) programs. A total of 156 alleles were detected in the 108 varieties/lines with 2–6 alleles per locus. The Shannon’s index of the population ranged from 0.6727 to 1.1368 and the genetic similarity between varieties ranged from 0.2250 to 1.0000, with the mean of 0.7585. Structure analysis revealed four genetic subpopulations for the entire materials tested. Based on GLM analysis, 12 SSR markers were found to be associated with plant height, spike length, grain number per spike and tiller number, with phenotypic contributions of 11.5%–17.6%, 19.4%–45.4%, 15.4%–22.1% and 29.2%, respectively. Based on MLM analysis, 8 SSR markers were associated with plant height, awn length, and spikelet compactness, with the phenotypic contributions of 31.71%–49.88%, 28.1%–37.2%, and 22.7%–32.7%, respectively. These associated markers were distributed on 6 chromosomes of the barley genome.

Key words: Hulless barley, SSR, Genetic diversity, Population structure, Association analysis

[1]孟凡磊, 强小林, 佘奎军, 唐亚伟, 胡银岗. 西藏主要农区青稞品种的遗传多样性分析. 作物学报, 2007, 33: 1910–1914



Meng F L, Qiang X L, She K J, Tang Y W, Hu Y G. Genetic diversity analysis among hulless barley varieties from the major agricultural areas of Tibet. Acta Agron Sin, 2007, 33: 1910–1914 (in Chinese with English abstract)



[2]Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1066



[3]Bhagwat A A, Cregan P B, Akkaya M S. Length polymorphisms of simple sequencerepeat DNA in soybean. Genetics, 1992, 132: 1131–1139



[4]Maroof M S, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466–5470



[5]Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theor Appl Genet, 1994, 88: 1–6



[6]赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 王化俊. 大麦SSR标记遗传多样性及其与农艺性状关联分析. 中国农业科学, 2012, 46: 233–242



Lai Y, Wang P X, Fan G Q, Si E J, Wang J, Yang K, Wang H J. Genetic diversity and association analysis using SSR markers in barley. Sci Agric Sin, 2013, 46: 233–242 (in Chinese with English abstract)



[7]Maccaferri M, Sanguineti M C, Noli E, Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271–290



[8]Liu S B, Yang X P, Zhang D D, Bai G H, Chao S M, Bockus W. Genome-wide association analysis identified SNPs closely linked to a gene resistant to Soil-borne wheat mosaic virus. Theor Appl Genet, 2014, 127: 1039–1047



[9]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433–2437



[10]Kumar B, Abdel-Ghani A H, Pace J, Reyes-Matamoros J, Hochholdinger F, Lübberstedt T. Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Sci, 2014, 224: 9–19



[11]Wen W W, Li D, Li X, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun, 2014, 5: 34–38



[12]Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870–1878



[13]Yonemaru J, Mizobuchi R, Kato H, Yamamoto T, Yamamoto E, Matasubara K, Hirabayashi H, Takeuchi Y, Tsunematsu H, Ishii T. Genomic regions involved in yield potential detected by genome-wide association analysis in Japanese high-yielding rice cultivars. BMC Genomics, 2014, 15: 346



[14]D'hoop B B, Keizer P L, Paulo M J, Visser R G, van Eeuwijk F A,van Eck H J. Identification of agronomically important QTL in tetraploid potato cultivars using a marker-trait association analysis. Theor Appl Genet, 2014, 127: 731–748



[15]Wu D Z, Qiu L L, Xu L, Ye L Z, Chen M X, Sun D F, Chen Z H, Zhang H T, Jin X L, Dai F, Zhang G P. Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PloS One, 2011, 6: e22938



[16]Brantestam A K, Bothmer R, Dayteg C, Rashal I, Tuvesson S, Weibull J. Genetic diversity changes and relationships in spring barley (Hordeum vulgare L.) germplasm of Nordic and Baltic areas as shown by SSR markers. Genet Resour Crop Evol, 2007, 54: 749–758



[17]Sun D F, Ren W B, Sun G L, Peng J H. Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica, 2011, 178: 31–43



[18]Kraakman A W, Martnez F, Mussiraliev B, Eeuwijk F A, Niks R E. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed, 2006, 17: 41–58



[19]Ivandic V, Hackett C A, Nevo E, Keith R, Thomas W T B, Forster B P. Analysis of simple sequence repeats (SSRs) in wild barley from the fertile crescent: associations with ecology, geography and flowering time. Plant Mol Biol, 2002, 48: 511–527



[20]Ivandic V, Thomas W T B, Nevo E, Zhang Z, Forster B P. Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed, 2003, 122: 300–304



[21]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[22]Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8–15



[23]Earl, D. A. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4:359–361



[24]潘志芬, 邹弈星, 邓光兵, 翟旭光, 吴芳, 余懋群. 青藏高原栽培青稞SSR标记遗传多样性研究. 中山大学学报(自然科学版), 2007, 46: 82–86



Pan Z F,Zou Y X,Deng G B,Zhai X G, Wu F, Yu M Q. Genetic diversity of SSR Markers in cultivated hulless barley from Qinghai-Tibet plateau in China. Acta Sci Nat Univ Sunyatseni, 2007, 46: 82–86 (in Chinese with English abstract)



[25]杨平, 刘仙俊, 刘新春, 李俊, 王希文, 何守朴, 冯宗云. 利用SRAP标记研究四川高原青稞育成品种的遗传多样性. 遗传, 2008, 30: 115–122 



Yang P, Liu X J, Liu X C, Li J, Wang X W, He S P, Feng Z Y. Genetic diversity analysis of the developed Qingke (hulless barley) varieties from the plateau regions of Sichuan Province in China revealed by SRAP markers. Hereditas (Beijing), 2008, 30: 115–122 (in Chinese with English abstract)



[26] Harris B P, Stokesbury K E. The spatial structure of local surficial sediment characteristics on Georges Bank, USA. Continental Shelf Res, 2010, 30: 1840–1853



[27]Wang M L, Zhu C S, Barkley N A, Chen Z B, Erpelding J E, Murray S C, Tuinstra M R, Tesso T, Pederson G A, Yu J M. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor Appl Genet, 2009, 120: 13–23



[28] Kline J B, Moore D J, Clevenger C V. Activation and association of the Tec tyrosine kinase with the human prolactin receptor: mapping of a Tec/Vav-receptor binding site. Mol Endocrinol, 2001, 15: 832–841



[29]武玉国, 吴承来, 秦保平, 王振林, 黄玮, 杨敏, 尹燕枰. 黄淮冬麦区175个小麦品种的遗传多样性及SSR标记与株高和产量相关性状的关联分析. 作物学报, 2012, 38: 1018–1028



Wu Y G, Wu C L, Qin B P, Wang Z L, Huang W, Yang M, Yin Y P. Diversity of 175 wheat varieties from Yellow and Huai River Valleys facultative wheat zone and association of SSR markers with plant height and yield related traits. Acta Agron Sin, 2012, 38: 1018–1028 (in Chinese with English abstract)



[30]Hansen M, Kraft T, Ganestam S, Sall T, Nilsson N O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res, 2001, 77: 61–66



[31]Cockram J, White Jon, Leigh F J, Lea V J, Chiapparino E, Laurie D A, Mackay I J, Powell W, O'Sullivan D M. Association mapping of partitioning loci in barley. BMC Genet, 2008, 9: 16



[32]Marquez-Cedillo L A, Hayes P M, Kleinhofs A, Legge W G,Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet, 2001, 103: 625–637



[33]Teulat B, Borries C, This D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet, 2001, 103: 161–170



[34]Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006, 112: 1221–1231



[35] 司二静, 张宇, 汪军成, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 大麦农艺性状与SSR标记的关联分析. 作物学报, 2015, 41: 1064–1072



Si E J, Zhang Y, Wang J C, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J. Association analysis between SSR marker and agronomic traits in barley. Acta Agron Sin, 2015, 41: 1064–1072 (in Chinese with English abstract)



[36] Wang J, Yang J, McNeil D L, Zhou M. Identification and molecular mapping of a dwarfing gene in barley (Hordeum vulgare L.) and its correlation with other agronomic traits. Euphytica, 2010, 175: 331–342

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[3] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[4] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[5] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[6] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[7] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[8] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[9] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[10] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[11] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[12] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[13] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[14] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[15] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!