Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (08): 1134-1142.doi: 10.3724/SP.J.1006.2016.01134


Identification of Dwarfing Wheat Germplasm SN224 and Analysis of QTLs for Its Agronomic Characters

WANG Xin1,2,MA Ying-Xue1,2,YANG Yang1,2,WANG Dan-Feng1,YIN Hui-Juan1,WANG Hong-Gang1,2,*   

  1. 1College of Agronomy, Shandong Agricultural University, Tai`an 271018, China; 2Shandong Subcentre of National Wheat Improvement Center, Tai’an 271018, China?
  • Received:2015-12-15 Revised:2016-05-09 Online:2016-08-12 Published:2016-05-23
  • Contact: 王洪刚, E-mail: hgwang@sdau.edu.cn, Tel: 0538-8242141 E-mail:627407093@qq.com
  • Supported by:

    This study was supported by the National Key Technology R&D Program of China (2013BAD01B02-8).


SN224 is a dwarfing wheat line derived from a cross between hexaploid triticale (AABBRR, 2n = 6x) and common wheat (AABBDD, 2n = 6x). We evaluated its cytologic characteristic and main agronomic characters, and analyzed the genetic basis of dwarfing trait in order to use the germplasm in wheat breeding program.This white grain wheat had compact plant type, spindle-shaped panicle and moderate resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and stripe rust (Puccinia striiformis f. sp. tritici, Pst). There were 42 chromosomes in root tip cells, showing 21 bivalents in pollen mother cells. FISH confirmed that SN224 was a 1BL·1RS translocation line. The plant height was between two parents of F1 from a cross between SN224 and Huixianhong and distributed continuously and normally in F2 population. The detection of specific molecular marker for genes Rht-B1b, Rht-D1b, and Rht8 indicated that this line had none of the three dwarfing genes. In the meantime, the introduction of 1RS had no obvious effect on plant height. The F2 population was used to construct a genetic linkage map containing 134 SSR markers which covered a total length of 1332.1 cM. Two major dwarfing QTLs on chromosomes 1B and 4B were detected by additive-inclusive composite interval mapping (ICIM-ADD). QPh1B and QPh4B, located in Xwmc719Xgwm18 and Xgwm368Xmag4284 intervals, explained 20.0% and 10.2% of phenotypic variation, respectively. Seven QTLs controlling ear length, panicle number per plant, and kernel number per spike were detected. The QTL in KSUM062Xmag4284 interval contributed to decrease plant height, increase ear length and panicle number per plant.

Key words: Common wheat–rye translocation line, Agronomic traits, Cytological identification, QTL mapping, Dwarfing gene

[1] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. “Green revolution” genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256–261
[2] Hedden P. The genes of the green revolution. Trends Genet, 2003, 19: 5–9
[3] Saville R J, Gosman N, Burt C J, Makepeace J, Steed A, Corbitt M, Chandler E, Brown J K M, Boulton M I, Nicholson P. The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J Exp Bot, 2011, 63: 1271–1283
[4] 嵇怡, 缪旻珉, 陈学好. 植物矮生性状的分子遗传研究进展. 分子植物育种, 2006, 4: 753–771
    Ji Y, Miao M M, Chen X H. Progress on the molecular genetics of dwarf character in plants. Mol Plant Breed, 2006, 4: 753–771 (in Chinese with English abstract)
[5] Cadalen T, Sourdille P, Charmet G, Tixier M H, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. Molecular markers linked to genes affecting plant height in wheat using a doubled- haploid population. Theor Appl Genet, 1998, 96: 933–940
[6] Ahmad M, Sorrells M E. Distribution of microsatellite alleles linked to Rht8 dwarfing gene in wheat. Euphytica, 2002, 123: 235-240
[7] Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica, 2010, 174: 447–458
[8] 杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布. 中国农业科学, 2006, 39: 1680–1688
    Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y. Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin, 2006, 39: 1680–1688 (in Chinese with English abstract)
[9] 贾继增, 丁寿康, 李月华, 张辉. 中国小麦的主要矮秆基因及矮源的研究. 中国农业科学, 1992, 25 (1): 1–5
    Jia J Z, Ding S K, Li Y H, Zhang H. Studies of main dwarf genes and dwarf resources on Chinese wheat. Sci Agric Sin, 1992, 25(1): 1–5 (in Chinese with English abstract)
[10] 石涛, 王洪刚, 何方, 邓世民, 高居荣. 小麦矮秆新基因的SSR标记. 山东农业科学, 2008, (8): 1–5
    Shi T, Wang H G, He F, Deng S M, Gao J R. Identification of SSR markers linked to new wheat dwarf gene. Shandong Agric Sci, 2008, (8): 1–5 (in Chinese with English abstract)
[11] 宗浩, 崔法, 鲍印广, 赵春华, 王玉海, 杜斌, 王庆专, 王洪刚. 小麦矮秆种质系山农495矮秆基因的分子标记定位. 麦类作物学报, 2009, 29: 385–389
    Zong H, Cui F, Bao Y G, Zhao C H, Wang Y H, Du B, Wang Q Z, Wang H G. Developing molecular markers for the Rht gene in dwarfing germplasm line Shannong 495. J Triticeae Crops, 2009, 29: 385–389 (in Chinese with English abstract)
[12] 韩静然, 王长有, 赵宁娟, 吉万全, 赵毓, 刘雪利. 冬小麦新种质N0238D矮秆性状的遗传分析. 西北农业学报, 2010, 19(6): 60–63
    Han J R, Wang C Y, Zhao N J, Ji W Q, Zhao Y, Liu X L. Genetic analysis of dwarf trait in new winter wheat germplasm N0238D. Acta Agric Boreali-Occident Sin, 2010, 19(6): 60–63 (in Chinese with English abstract)
[13] 武军, 马琳, 赵继新, 陈新宏, 刘淑会, 杨群慧. 普通小麦–华山新麦草矮秆种质B62的分子细胞学鉴定. 西北农林科技大学学报(自然科学版), 2010, 38(12): 123–127
    Wu J, Ma L, Zhao J X, Chen X H, Liu S H, Yang Q H. Molecular cytology on a dwarf germplasm derived from Triticum aestivum × Psathyrosatachys huashanica. J Northwest A&F Univ (Nat Sci Edn), 2010, 38(12): 123–127 (in Chinese with English abstract)
[14] 杨恩年, 李俊, 杨武云, 邹裕春. 矮秆大穗高产小麦育种亲本SW3243重要农艺性状特性及育种应用效果. 中国农学通报, 2010, 26(12): 114–117
    Yang E N, Li J, Yang W Y, Zou Y C. The agronomic traits and the utilization of dwarf, large spike and high yielding potential wheat breeding parent SW3243. Chin Agric Sci Bull, 2010, 26(12): 114–117 (in Chinese with English abstract)
[15] 闫美, 刘如如, 于海涛, 达瓦, 格桑, 李安飞, 孔令让. 小麦矮秆种质山农矮330的农艺性状与矮化特性研究. 山东农业科学, 2011, (8): 14–17
    Yan M, Liu R R, Yu H T, Da W, Ge S, Li A F, Kong L R. Agronomic traits and dwarfing characteristics of wheat dwarf germplasm Shannong’ai 330. Shandong Agric Sci, 2011, (8): 14–17 (in Chinese with English abstract)
[16] 付颖, 吴金华, 王长有, 张保军, 吉万全. 小麦新种质N0381D矮秆基因的遗传与SSR标记分析. 麦类作物学报, 2011, 31: 411–415
     Fu Y, Wu J H, Wang C Y, Zhang B J, Ji W Q. Genetic and SSR analysis of dwarf gene in new wheat germplasm N0381D. J Triticeae Crops, 2011, 31: 411–415 (in Chinese with English abstract)
[17] 王刚, 胡铁柱, 李小军, 董娜, 冯素伟, 李淦, 张立琳, 茹振钢. 小麦新品种百农矮抗58及其亲本矮秆基因的检测. 河南农业科学, 2012, 41(9): 22–25
    Wang G, Hu T Z, Li X J, Dong N, Feng S W, Li G, Zhang L L, Ru Z G. Detection of dwarfing genes in wheat variety AK58 and its parents. J Henan Agric Sci, 2012, 41(9): 22–25 (in Chinese with English abstract)
[18] 欧俊梅, 王治斌, 周强, 任勇, 李生荣, 陶军. 糯小麦矮源新种质11-805矮秆性状遗传研究. 中国农学通报, 2014, 30(24): 152–155
    Ou J M, Wang Z B, Zhou Q, Ren Y, Li S R, Tao J. Genetic rule of dwarf trait in new waxy dwarf wheat 11-805. Chin Agric Sci Bull, 2014, 30(24): 152–155 (in Chinese with English abstract)
[19] 张明, 吴瑕, 张一铎, 张超, 牛祖彪, 崔淑佳, 杨秋平, 王洪刚. 小麦矮秆种质系山农342-9矮秆基因的分子标记定位. 山东农业科学, 2014, 46(7): 7–10
    Zhang M, Wu X, Zhang Y D, Zhang C, Niu Z B, Cui S J, Yang Q P, Wang H G. Molecular mapping of Rht gene in wheat dwarfing germplasm line Shannong 342-9. Shandong Agric Sci, 2014, 46(7): 7–10 (in Chinese with English abstract)
[20] 昝凯, 郑青焕, 敬樊, 陈真真, 白宇浩, 刘洋, 王亮明, 刘淑会, 王中华, 陈新宏. 小麦–大麦矮秆渗入系WB29的分子细胞学鉴定及其矮秆遗传特性分析. 农业生物技术学报, 2015, 23: 1273–1281
    Zan K, Zheng Q H, Jing F, Chen Z Z, Bai Y H, Liu Y, Wang L M, Liu S H, Wang Z H, Chen X H. Molecular cytogenetic identification of a wheat (Triticum aestivum L.)–barley ( Hordeum vulgare ssp. distichon Hsü.) dwarf introgression line WB29 and its dwarf traits genetic analysis. J Agric Biol, 2015, 23: 1273–1281 (in Chinese with English abstract)
[21] 崔淑佳, 卢虹, 崔雨, 高居荣, 王洪刚, 李兴锋. 小麦–长穗偃麦草矮秆种质系的鉴定及遗传分析. 核农学报, 2015, 29: 435–441
    Cui S J, Lu H, Cui Y, Gao J R, Wang H G, Li X F. Identification and genetic analysis of dwarf wheat-Thinopyrum ponticum germplasms. J Nuclear Agric Sci, 2015, 29: 435–441 (in Chinese with English abstract)
[22] 杨秋平, 杨阳, 王鑫, 马莹雪, 张明, 王洪刚. 小麦矮秆种质山农11069-5矮秆基因的遗传分析及分子定位. 分子植物育种, 2015, 13: 71–76
    Yang Q P, Yang Y, Wang X, Ma Y X, Zhang M, Wang H G. Genetic analysis and molecular mapping of the Rht gene in dwarf germplasm Shannong11069-5. Mol Plant Breed, 2015, 13: 71–76 (in Chinese with English abstract)
[23] 中华人民共和国农业部. NY/T 1301-2007 农作物品种区域试验技术规程—小麦
    Ministry of Agriculture of the People’s Republic of China. NY/T 1301-2007 Technical Procedures for Wheat Variety Regional Trials (in Chinese)
[24] 中华人民共和国农业部. NY/T 1443.1-2007小麦抗病虫性评价技术规范-第1部分: 小麦抗条锈病评价技术规范, 2007
    Ministry of Agriculture of the People`s Republic of China. NY/T 1443.1-2007 Rules for resistance evaluation of wheat to diseases and insect pests Part1: Rule for resistance evaluation of wheat to yellow rust (Puccinia striiformis West. f. sp. tritici Eriks. Et Henn.), 2007 (in Chinese)
[25] 盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988, (1): 49
    Sheng B Q. Scoring powdery mildew with infection type at wheat seedling stage. Plant Prot, 1988, (1): 49 (in Chinese)
[26] He F, Xu J, Qi X, Bao Y, Li X, Zhao F, Wang H. Molecular cytogenetic characterization of two partial wheat Elytrigia elongata amphiploids resistant to powdery mildew. Plant Breed, 2013, 132: 533–557
[27] Bao Y, Li X, Liu S, Cui F, Wang H. Molecular cytogenetic characterization of a new wheat-Thinopyrum partial amphiploid resistant to powdery mildew and stripe rust. Cyto Geno Res, 2009, 126:390–395
[28] Tang Z, Yang Z, Fu S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis, J Appl Genet, 2014, 55: 313–318
[29] Stein N, Herren G, Keller B. A new DNA extraction method for high-throughout marker analysis in a large genome species such as Triticum aestivum. Plant Breed, 2001, 120: 354–356
[30] Li J, Cui F, Ding A, Zhao C, Wang X, Wang L, Bao Y, Qi X, Li X, Gao J, Feng D, Wang H. QTL detection of seven quality traits in wheat using two related recombinant inbred line populations. Euphytica, 2002, 183: 207–226
[31] Kosambi D D. The estimation of map distances from recombination values. Anna Eugent, 1944, 12: 172–175
[32] Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243–260
[33] Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153–160
[34] Liu D C, Gao M Q, Guan R X, Li R Z, Cao S H, Guo X L, Zhang A M, Mapping quantitative trait loci for plant height in wheat (Triticum aestivum L.) using a F2:3 population. Acta Genet Sin, 2002, 29: 706–711 (in English with Chinese abstract)
[35] 毕晓静. 小麦重要农艺性状的遗传分析与QTL定位. 西北农林科技大学硕士学位论文. 陕西杨凌, 2013
    Bi X J. Genetic Analysis and QTL of Agronomic Traits in Wheat. Master Thesis of Dissertation of Northwest A&F University, Yangling, China, 2013 (in Chinese with English abstract)
[36] 陈广凤, 陈建省, 田纪春. 小麦株高相关性状与SNP标记全基因组关联分析. 作物学报, 2015, 41: 1500–1509
    Chen G F, Chen J S, Tian J C. Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agron Sin, 2015, 41: 1500–1509 (in Chinese with English abstract)
[37] Wang Y, Chen L, Du Y, Yang Z, Condon A G, Hu Y G. Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Res, 2014, 1
[1] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[2] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[3] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[4] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[5] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[6] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[7] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[8] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[9] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
[10] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[11] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[12] JIA Xiao-Ping,QUAN Jian-Zhang,WANG Yong-Fang,DONG Zhi-Ping,YUAN Xi-Lei,ZHANG Bo,LI Jian-Feng. Effects of different photoperiod conditions on agronomic traits of foxtail millet [J]. Acta Agronomica Sinica, 2019, 45(7): 1119-1127.
[13] Li-Juan WEI,Rui-Ying LIU,Li ZHANG,Zhi-You CHEN,Hong YANG,Qiang HUO,Jia-Na LI. Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus [J]. Acta Agronomica Sinica, 2019, 45(6): 818-828.
[14] YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu. Locating QTL controlling yield traits in overwintering cultivated rice [J]. Acta Agronomica Sinica, 2019, 45(4): 522-537.
[15] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
Full text



No Suggested Reading articles found!