Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (06): 795-810.doi: 10.3724/SP.J.1006.2017.00795


Identification and Evaluation of Blast Resistance for Resequenced Rice Core Collections

LI Xu-Sheng1,**,XIANG Xiao-Jiao2,**,SHEN Cong-Cong2,YANG Long-Wei1,*,CHEN Kai3,WANG Xiao-Wen1,QIU Xian-Jin1,ZHU Xiao-Yuan4,XING Dan-Ying1,XU Jian-Long2,3,*   

  1. 1 Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou 434025, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518210, China; 4Institute of Rice Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
  • Received:2016-10-06 Revised:2017-03-02 Online:2017-06-12 Published:2017-03-13
  • Contact: Xu Jianlong, E-mail: xujlcaas@126.com, Tel: 010-82105854; Yang Longwei, E-mail: ylwei1968@126.com
  • Supported by:

    This study was supported by National High-Tech Research & Development Plan (863) (2014AA10A601), Open Fund of Hubei Collaborative Innovation Centre for Grain Industry (2015MS010, LXT-16-06, LXT-17-02), the Shenzhen Peacock Plan (20130415095710361), Collaboration Project of Hubei Academy of Agricultural Sciences (2015H200014), and Open Fund of Research Centre of Ministry of Education for Wetland Ecology & Agronomy Application (KF201403).


Rice blast is one of the key factors that restrict rice yield, and screening blast resistance resources is a basis work for mining blast resistance genes and breeding resistant varieties. A set of 1217 accessions selected from 3000 (3K) re-sequenced rice core collection were comprehensively evaluated for blast resistance in two natural disease nurseries at Lianghe and Bajiao in Enshi area and agronomic traits in disease-free field as well as resistance spectrum of resistant accessions at seedling stage. There were significant differences in response of different accessions to rice blast. Among them, a total of 144 accessions with blast resistance at different growing stages were obtained. Thirty-four accessions with relatively high comprehensive blast resistance were inoculated with 30 diverse isolates, showing that 17 accessions with a broad resistance spectrum (≥70%). According to the investigation of agronomic traits, most resistant accessions had high plant height, low grain yield per plant and poor agronomic traits. Finally, seven accessions with high blast resistance, broad resistant spectrum and relatively good agronomic traits were selected, including IRGA 411-1-6-1F-A, YJ 30, Jinzao 47, Quanzhen 10, YN 1353-3, Yunjing 23, and IRAT 1047, were identified. Those resistant accessions can be used in mining resistance gene and variety improvement for blast resistance.

Key words: Rice blast, Germplasm, Natural infestation, Resistance spectrum, Excellent resistance resource

[1] Hwang B K, Koh Y J, Chung H S. Effects of adult-plant resistance on blast severity and yield of rice. Plant Dis, 1987, 71: 1035–1038 [2] Torres C Q, Teng P S. Path coefficient and regression analysis of the effects of leaf and panicle blast on tropical rice yield. Crop Prot, 1993, 12: 296–302 [3] 孙国昌, 杜新法, 陶荣祥, 毛雪琴, 孙漱沅. 水稻稻瘟病防治研究进展和21世纪初研究设想. 植物保护, 2000, 26(1): 33–35 Sun G C, Du X F, Tao R X, Mao X Q, Sun S Y. Progress in controlling rice blast disease and its prospect in early 21st century. Plant Prot, 2000, 26(1): 33–35 (in Chinese) [4] Yu Z H, Mackill D J, Bonman J M, Tanksley S D. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet, 1991, 81: 471–476 [5] Jia Y, Mcadams S A, Bryan G T, Hershey H P, Valent B. Direct interaction of resistance gene and a virulence gene products confers rice blast resistance. EMBO J, 2000, 19: 4004–4014 [6] Correa Victoria F J, Martinez Racines C P. Genetic structure and virulence diversity of Pyricularia grisea for breeding for rice blast resistance. Arterioscler Thromb Vasc Biol, 1995, 15: 219–-227 [7] Zeigler R S, Cuoc L X, Scott R P, Bernardo M A, Chen D H, Valent B, Nelson R J. The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology, 1995, 85: 443–451 [8] Turnbull L A, Levine J M, Fergus A J F, Petermann J S. The pi40 gene for durable resistance to rice blast and molecular analysis of pi40-advanced backcross breeding lines. Phytopathology, 2009, 99: 243–250 [9] Fang X, Zhang Y, Zhang S, Lin J, Wang Y. Using gene silencing technology to create blast resistant rice resources. Agric Sci Technol, 2014, 15: 1109–1112 [10] Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1066 [11] 国家水稻数据中心. 稻瘟病主效抗性基因列表[DB/OL]. [2015-04-11]. http://www.ricedata.cn/gene/gene_pi.htm National Data Center of Rice. List of Major Blast Resistance Genes [DB/OL]. [2015-04-11]. http://www.ricedata.cn/gene/gene_pi.htm [12] Liu G, Lu G, Zeng L, Wang G L. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics, 2002, 267: 472–480 [13] 朱小源, 杨健源, 刘景梅, 司徒志谋, 康金平, 胡学应, 朱敏记, 罗森辉, 杨祁云, 林佩珍, 曾列先, 姜先芽, 陈深. 广东水稻品种抗稻瘟病性分析与利用策略. 广东农业科学, 2006, (5): 34–37 Zhu X Y, Yang J Y, Liu J M, SiTu Z M, Kang J P, Hu X Y, Zhu M J, Luo S H, Yang Q Y, Lin P Z, Zeng L X, Jiang X Y, Chen S. Evaluation on resistance of rice varieties in guangdong to rice blast and strategy for its utilization. Guangdong Agric Sci, 2006, (5): 34–37 (in Chinese with English abstract) [14] 杨健源, 康金平, 黄显良, 姜先芽, 赖添奎, 陈深, 李传瑛, 曾列先, 朱小源. 稻瘟病田间自然诱发病圃的建立及其在抗性鉴定中的应用. 广东农业科学, 2007, (9): 59–61 Yang J Y, Kang J P, Huang X L, Jiang X Y, Lai T K, Chen S, Li C Y, Zeng L X, Zhu X Y. Establishment of natural rice blast nursery and its application on the resistance evaluation of rice varieties. Guangdong Agric Sci, 2007, (9): 59–61 (in Chinese with English abstract) [15] 吴双清, 王林, 卿明凤. 水稻区试品种抗稻瘟病鉴定结果分析. 中国稻米, 2011, 17: 53–55 Wu S Q, Wang L, Qing M F. Identification and analysis of regional tested rice varieties resistant to rice blast. China Rice, 2011, 17: 53–55 (in Chinese) [16] 李求文, 杨隆维, 袁利群, 许敏. 持久抗稻瘟病杂交水稻新三系及组合选育与应用研究进展. 云南农业大学学报, 2006, 21: 276–282 Li Q W, Yang L W, Yuan L Q, Xu M. Breeding and the applied research progress of hybrid Rice of new three line and combination of persistent resistance of blast. J Yunnan Agric Univ, 2006, 21: 276–282 (in Chinese with English abstract) [17] The 3000 rice genomes project. The 3000 rice genomes project. Gigascience, 2014, 3: 7 [18] Li J Y, Wang J, Zeigler R S. The 3000 rice genomes project: new opportunities and challenges for future rice research. Gigascience, 2014, 3: 8 [19] 湖北省质量技术监督局.农作物品种区域试验抗病性鉴定操作规程(DB42/T 208-2001). 湖北省地方标准, 2001年12月12日发布,2002年1月1日实施 Hubei Province Quality and Technology Supervision Bureau. Resistance Identification Procedures of Crop Varieties for Regional Yield Test (DB42/T 208-2001). Hubei Local Standard, released on December 12, 2001 and effective on January 1, 2002 (in Chinese) [20] Bonman J M, Estrada B A, Bandong J M. Leaf and neck blast resistance in tropical lowland rice cultivars. Plant Dis, 1989, 73: 388–390 [21] Zhuang J Y, Ma W B, Wu J L, Chai R Y, Lu J, Fan Y Y, Jin M Z, Leung H, Zheng K L. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica, 2002, 128: 363–370 [22] 陈福如, 阮宏椿, 杨秀娟, 林时迟, 方琴, 严琰. 稻瘟病苗瘟叶瘟和穗颈瘟的相关性分析. 中国农学通报, 2006, 22: 440–443 (in Chinese with English abstract) Chen F R, Ruan H C, Yang X J, Lin S C, Fang Q, Yan Y. The correlation in seedlingblasts, leaf blasts and neck blasts of rice. Chin Agric Sci Bull, 2006, 22: 440-443 [23] Noenplab A, Vanavichit A, Toojinda T, Sirithunya P, Tragoonrung S, Sriprakhon S, Vongsaprom C. QTL mapping for leaf and neck blast resistance in Khao Dawk Mali105 and Jao Hom Nin recombinant inbred lines. Scienceasia, 2006, 32: 133–142 [24] Miah G, Rafii M Y, Ismail M R, Puteh A B, Rahim H A, Asfaliza R, Latif M A. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep, 2012, 40: 2369–2388 [25] 李恩宇, 王悦, 陈光辉. 水稻稻瘟病抗性基因的定位及克隆研究进展. 作物研究, 2014, 28(6): 754–760 Li E Y, Wang Y, Chen G H. Advances on the mapping and cloning of blast resistance gene in rice. Crop Res, 2014, 28(6): 754–760 (in Chinese with English abstract) [26] Kobayashi N, Telebanco-Yanoria M J, Tsunematsu H, Kato H, Imbe T, Fukuta Y. Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Jpn Agric Res Q, 2007, 41: 31–37 [27] 何月秋, 唐文华. CO39 近等基因系抗稻瘟病性分析. 作物学报, 2001, 27: 838–841 He Y Q,Tang W H. Identification of CO39 near-isogenicl ines for rice blast resistance. Acta Agron Sin, 2001, 27: 838–841 (in Chinese with English abstract) [28] Chou L S, Lyon E, Wittwer C T. A comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning: cystic fibrosis transmembrane conductance regulator gene as a model. Am J Clin Pathol, 2005, 124: 330–338 [29] Krypuy M, Newnham G M, Thomas D M, Conron M, Dobrovic A. High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer, 2006, 6: 295 [30] Do H, Krypuy M, Mitchell P L, Fox S B, Dobrovic A. High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies. BMC Cancer, 2008, 8: 142 [31] Li J S, Wang X M, Dong R X, Yang Y, Zhou J, Yu C, Cheng Y, Yan C Q, Chen J P. Evaluation of high-resolution melting for gene mapping in rice. Plant Mol. Biol. Rep, 2011, 29: 979–985 [32] 罗文龙, 郭涛, 周丹华, 陈海英, 王慧, 陈志强, 刘永柱. 利用基于HRM的功能标记分析水稻Wx和fgr的基因型. 湖南农业大学学报, 2013, 39: 597–603 Luo W L, Guo T, Zhou D H, Chen H Y, Wang H, Chen Z Q, Liu Y Z. Analysis of rice genotypes rice Wx and fgr by HRM-based functional marker. J Hunan Agric Univ, 2013, 39: 597–603 (in Chinese with English abstract) [33] Shabanimofrad M, Rafii M Y, Ashkani S, Hanafi M M, Adam N A, Latif M A, Rahim H A, Sahebi M. Analysis of SSR markers linked with brown planthopper resistance genes (Bph) using high-resolution melting (HRM) in rice. Plant Omics, 2015, 8: 212–219

[1] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[2] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[3] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[4] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[5] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[6] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[7] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[8] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[9] SUN Zhi-Guang, WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 61-70.
[10] DUAN Can-Xing,DONG Huai-Yu,LI Xiao,LI Hong,LI Chun-Hui,SUN Su-Li,ZHU Zhen-Dong,WANG Xiao-Ming. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition [J]. Acta Agronomica Sinica, 2020, 46(8): 1135-1145.
[11] YAN Cai-Xia,WANG Juan,ZHANG Hao,LI Chun-Juan,SONG Xiu-Xia,SUN Quan-Xi,YUAN Cui-Ling,ZHAO Xiao-Bo,SHAN Shi-Hua. Developing the key germplasm of Chinese peanut landraces based on phenotypic traits [J]. Acta Agronomica Sinica, 2020, 46(4): 520-531.
[12] ZHANG Xiao-Jun,XIAO Jin,WANG Hai-Yan,QIAO Lin-Yi,LI Xin,GUO Hui-juan,CHANG Li-Fang,ZHANG Shu-Wei,YAN Xiao-Tao,CHANG Zhi-Jian,WU Zong-Xin. Evaluation of resistance to Fusarium head blight in Thinopyrum-derived wheat lines [J]. Acta Agronomica Sinica, 2020, 46(01): 62-73.
[13] GAO Huan-Huan,YE Sang,WANG Qian,WANG Liu-Yan,WANG Rui-Li,CHEN Liu-Yi,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus [J]. Acta Agronomica Sinica, 2019, 45(9): 1416-1430.
[14] Hai-Yan LU,Ling ZHOU,Feng LIN,Rui WANG,Feng-Ge WANG,Han ZHAO. Development of efficient KASP molecular markers based on high throughput sequencing in maize [J]. Acta Agronomica Sinica, 2019, 45(6): 872-878.
[15] Cui CUI,Chuang CHENG,Yu-Feng ZHAO,Huan-Huan GAO,Rui-Li WANG,Liu-Yan WANG,Qing-Yuan ZHOU. Screening and comprehensive evaluation of aluminum-toxicity tolerance during germination stage in 52 varieties (lines) of pea germplasm [J]. Acta Agronomica Sinica, 2019, 45(5): 798-805.
Full text



No Suggested Reading articles found!