Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (07): 983-992.doi: 10.3724/SP.J.1006.2017.00983
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIU Chang,LI Shi-Jin,WANG Ke,YE Xing-Guo,LIN Zhi-Shan*
[1] De Pace C, Qualset C O. Mating system and genetic differentiation in Dasypyrum villosum (Poaceae) in Italy. Plant Syst Evol, 1995, 197: 123–147 [2] Frederiksen S. Taxonomic studies in Dasypyrum (Poaceae). Nord J Bot, 1991, 11: 135–142 [3] Gradzielewska A. The genus Dasypyrum—part 2. Dasypyrum villosum—a wild species used in wheat improvement. Euphytica, 2006, 152: 441–454 [4] Sears E R. Addition of the genome of Haynaldia villosa to Triticum aestivum. Am J Bot, 1953, 40: 168–174 [5] Liu C, Liu W, Wilson J, Friebe B, Gill B S. Development of a set of compensating Triticum aestivum – Dasypyrum villosum robertsonian translocation lines. Genome, 2011, 54: 836–844 [6] Liu D J, Chen P D, Pei G Z, Wang Y L, Qiu B X, Wang S L. Transfer of Haynaldia villosa chromosomes into Triticum aestivum. In: Miller T E, Koebner R M D, eds. Proceeding of the 7th International Wheat Genetics Symposium. Cambridge, UK, 1988, pp355–361 [7] Qi L L, Wang S L, Chen P D, Liu D J, Gill B S. Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theor Appl Genet, 1998, 97: 1042–1046 [8] Lin Z S, Zhang Y L, Wang M J, Li J R, Wang K, Chen X, Xu Q F, Zhang X S, Ye X G. Isolation and molecular analysis of genes Stpk-V2 and Stpk-V3 homologous to powdery mildew resistance gene Stpk-V in a Dasypyrum villosum accession and its derivatives. J Appl Genet, 2013, 54: 417–426 [9] Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732 [10]Zhang J C, Zheng H Y, Li Y W, Li H J, Liu X, Qin H J, Dong L L, Wang D W. Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat. Sci Rep, 2016, 6: 23805 [11] Li A L, Zhang R Z, Pan L, Tang L C, Zhao G Y, Zhu M Z, Chu J F, Sun X H, Wei B, Zhang X Q, Jia J Z, Mao L. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance. PLoS One, 2011, 6: e28810 [12] Erayman M, Turktas M, Akdogan G, Gurkok T, Inal B, Ishakoglu E, Ilhan E, Unver T. Transcriptome analysis of wheat inoculated with Fusarium graminearum. Front Plant Sci, 2015, 6: 867 [13]贾昌路, 张瑶, 朱玲, 张锐. 转录组测序技术在生物测序中的应用研究进展. 分子植物育种, 2015, 13: 2388–2394 Jia C L, Zhang Y, Zhu L, Zhang R. Application progress of transcriptome sequencing technology in biological sequencing. Mol Plant Breed, 2015, 13: 2388–2394 (in Chinese with English abstract) [14] Zhang H, Yang Y Z, Wang C Y, Liu M, Li H, Fu Y, Wang Y J, Nie Y B, Liu X L, Ji W Q. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics, 2014, 15: 898 [15] Zhang H, Hu W G, Hao J L, Lv S K, Wang C Y, Tong W, Wang Y J, Wang Y Z, Liu X L, Ji W Q. Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics, 2016, 17: 238 [16] Hao Y B, Wang T, Wang K, Wang X J, Fu Y P, Huang L L, Kang Z S. Transcriptome analysis provides insights into the mechanisms underlying wheat plant resistance to stripe rust at the adult plant stage. PLoS One, 2016, 11: e0150717 [17] Li Q Q, Niu Z B, Bao Y G, Tian Q J, Wang H G, Kong L R, Feng D S. Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306. Gene, 2016, 590: 5–17 [18]陈孝, 徐惠君, 杜丽璞, 尚立民, 韩彬, 施爱农, 肖世和. 利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究. 中国农业科学, 1996, 29(5): 1–8 Chen X, Xu H J, Du L P, Shang L M, Han B, Shi A N, Xiao S H. Transfer of gene resistant to powdery mildew from H. villosa to common wheat by tissue culture. Sci Agric Sin, 1996, 29(5): 1–8 (in Chinese with English abstract) [19] Li H, Chen X, Xin Z Y, Ma Y Z, Xu H J, Chen X Y, Jia X. Development and identification of wheat–Haynaldia villosa T6DL?6VS chromosome translocation lines conferring resistance to powdery mildew. Plant Breed, 2005, 124: 203–205 [20] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. p 117 Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. p 117 (in Chinese) [21] 吴宏亚, 张伯桥, 汪尊杰, 程顺和. 优质弱筋抗白粉病小麦新品种扬麦22的选育及配套栽培技术. 江苏农业科学, 2013, 41: 109–112 Wu H Y, Zhang B Q, Wang Z J, Cheng S H. Breeding and cultivation techniques of a new high quality of weak gluten wheat varieties Yangmai 22 resistance to powdery mildew. Jiangsu Agric Sci, 2013, 41: 109–112 (in Chinese) [22] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125–1128 [23] 曾小莉, 黄耀跃, 王相权, 王仕林, 康建. 国审品种内麦836小麦栽培技术规程. 种子世界, 2015, (5): 51–52 Zeng X L, Huang Y Y, Wang X Q, Wang S L, Kang J. Cultivation techniques of wheat about state approved varieties of Neimai 836. Seed World, 2015, (5): 51–52 (in Chinese) [24] 马登玉. 扬麦18的特征及高产栽培技术. 农业科技通讯, 2012, (1): 68–69 Ma D Y. Characteristics and high yielding cultivation techniques of Yangmai 18. Bull Agric Sci Technol, 2012, (1): 68–69 (in Chinese) [25] 张云龙, 王美蛟, 张悦, 褚翠萍, 林志珊, 徐琼芳, 叶兴国, 陈孝,张宪省. 不同簇毛麦6VS染色体臂的白粉病抗性特异功能标记的开发及应用. 作物学报, 2012, 38: 1827?1832 Zhang Y L, Wang M J, Zhang Y, Chu C P, Lin Z S, Xu Q F, Ye X G, Chen X, Zhang X S. Development and application of functional markers specific to powdery mildew resistance on chromosome arm 6VS from different origins of Haynaldia villosa. Acta Agron Sin, 2012, 38: 1827?1832 (in Chinese with English abstract) [26] 陈艳玲, 孙凯. 小麦品种金禾9123高产稳产栽培管理措施. 中国种业, 2011, (5): 70–71 Chen Y L, Sun K. High and stable yield cultivation and management measures of wheat variety Jinhe 9123. China Seed Ind, 2011, (5): 70–71 (in Chinese) [27] Paolacci A R, Tanzarella O A, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol, 2009, 10: 11 [28] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods, 2001, 25: 402–408 [29] Bie T D, Zhao R H, Zhu S Y, Chen S L, Cen B, Zhang B Q, Gao D R . Jiang Z N, Chen T T, Wang L, Wu R L, He H G. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Mol Breed, 2015, 35: 1-8 [30] 李桂萍, 陈佩度, 张守忠, 赵和. 小麦–簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源学报, 2011, 12: 744–749 Li G P, Chen P D, Zhang S Z, Zhao H. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. J Plant Genet Resour, 2011, 12: 744–749 (in Chinese with English abstract) |
[1] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[2] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[3] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[4] | HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081. |
[5] | MA Gui-Fang, MAN Xia-Xia, ZHANG Yi-Juan, GAO Hao, SUN Zhao-Xia, LI Hong-Ying, HAN Yuan-Huai, HOU Si-Yu. Integrated analysis between folate metabolites profiles and transcriptome of panicle in foxtail millet [J]. Acta Agronomica Sinica, 2021, 47(5): 837-846. |
[6] | WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586. |
[7] | LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612. |
[8] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[9] | ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323. |
[10] | GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93. |
[11] | QIN Tian-Yuan, SUN Chao, BI Zhen-Zhen, LIANG Wen-Jun, LI Peng-Cheng, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agronomica Sinica, 2020, 46(7): 1033-1051. |
[12] | TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996. |
[13] | Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340. |
[14] | Juan MA, Yan-Yong CAO, Li-Feng WANG, Jing-Jing LI, Hao WANG, Yan-Ping FAN, Hui-Yong LI. Identification of gene co-expression modules of maize plant height and ear height by WGCNA [J]. Acta Agronomica Sinica, 2020, 46(3): 385-394. |
[15] | PAN Li-Juan,CHEN Na,Ming-CHEN Na,WANG Tong,WANG Mian,CHEN Jing,YANG Zhen,WAN Yong-Shan,YU Shan-Lin,CHI Xiao-Yuan,LIU Feng-Zhen. Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene [J]. Acta Agronomica Sinica, 2019, 45(7): 993-1001. |
|