Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (02): 208-217.doi: 10.3724/SP.J.1006.2018.00208

• Orginal Article • Previous Articles     Next Articles

Regeneration Capacity Evaluation of Some Largely Popularized Wheat Varieties in China

Wei ZHANG**, Mi-Qi YIN**, Pei ZHAO, Ke WANG, Li-Pu DU, Xing-Guo YE*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Gene Resources and Genetic Improvement, Beijing 100081
    2 Hainan Sugarcane Breeding Station, Guangzhou Sugarcane Industry Research Institute, Sanya 572025, Hainan, China
  • Received:2017-03-26 Accepted:2017-09-10 Online:2018-02-12 Published:2017-09-28
  • Contact: Wei ZHANG,Mi-Qi YIN,Xing-Guo YE
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0102001) and the National Major Project for Developing New GM Crops (2016ZX08010004).


Strong genotype dependence exists in wheat doubling haploid and genetic engineering breeding, in which high regeneration ability is a main restrain. In this study, we evaluated the regeneration abilities of various explants of 24 commercial popularized wheat varieties and a new breeding line (CB037) with high powdery mildew resistance. The explants used in the two-year experiment were anther, immature embryo, and mature embryo. The regeneration potential was assessed based on callus induction rate, callus differentiation rate, and shoot induction rate. The plantlet regeneration rates of the all genotypes tested were 0-41.75% for anther culture, 2.25%-531.92% for immature embryo culture, and 3.24%-84.34% for mature embryo culture, showing significant differences among genotypes. Generally, immature embryos had stronger regeneration ability (119.79%) than mature embryos (36.23%) and anthers (4.91%). Among all the used genotypes, CB037 showed the highest regeneration rates for the three explant types. Lunxuan 987, Yangmai 16, Neimai 836, Kenong 199, Xinchun 6, Zhengmai 366, Zhengmai 9023, Xindong 20, Yannong 19, and Chuanmai 42 exhibited ideal regeneration abilities in immature embryo culture; Xinchun 6, Jingdong 8, Shimai 4185, Kenong 199, and Luanxun 987 performed good in mature embryo culture; and Shimai 4185 and Han 6172 were characterized with high regeneration rate of green plantlet in anther culture. Plant regeneration efficiency of wheat was closely associated with genotype and explant type. The same explant type from different genotypes showed significantly different regeneration abilities, and different explants of the same genotype showed different regeneration abilities. However, there was no correlation among regeneration abilities of the three types of explants. The selected genotypes with high regeneration potential are recommended for application in genetic and cell engineering breeding of wheat.

Key words: wheat, anther, immature embryo, mature embryo, tissue culture

Compositions of the media used in this study for callus induction and differentiation

Correlation coefficient between tissue culture traits of different wheat explants"

W14 W14 + 2 mg L-1 2,4-D + 0.5 mg L-1 KT + 100 g L-1 蔗糖 Sucrose + 2.4 g L-1 植物凝胶 Phytagel, pH 5.8
SD2 MS (不含MS维生素) + 30 g L-1 蔗糖 Sucrose + 150 mg L-1 Asp + 10.0 mg L-1 Vb1 + 2.0 mg L-1 2,4-D + 2.4 g L-1植物凝胶Phytagel, pH 5.8

MS (不含MS维生素) + 0.75 g L-1 MgCl2 + 15 g L-1 甘露醇 Mannitol + 15 g L-1 山梨醇Sorbitol + 8 g L-1琼脂 Agar +5.0 mg L-1 谷氨酰胺 Glutamine + 0.5 g L-1 CH + 12.0 g L-1葡萄糖 Glucose + 10 mg L-1 Vb1 + 1.0 mg L-1 Vb6 + 1.0 mg L-1 烟酸 Nicotinic acid + 2.0 mg L-1 Gly + 39 mg L-1 AS + 2 mg L-1 Dicamba + 4 mg L-1 AgNO3 + 40 mg L-1 Cys + 100 mg L-1 Vc, pH 5.8
1/2MSNK 1/2MS +0.5 mg L-1 NAA+1 mg L-1 KT+20 g L-1蔗糖 Sucrose +2.4 g L-1植物凝胶 Phytagel, pH 5.8
IESDI2 MS + 30 g L-1蔗糖 Sucrose + 2.4 g L-1 植物凝胶 Phytagel + 2 mg L-1 Dicamba, pH 5.8
FHCK MS +20 g L-1蔗糖 Sucrose + 2.4 g L-1植物凝胶 Phytagel, pH 5.8


Callus induction, differentiation and plantlet regeneration of the immature embryo tissues derived from different wheat genotypes"

Fig. 1

Callus induction rate, differential calli rate, green plantlet regeneration rate, and albino plantlet regeneration rate from anther culture in different wheat genotypes"

Fig. 2

Callus induction, differentiation and plantlet regeneration of anther culture of several wheat genotypes A: callus induction from anther culture of Zhoumai 18; B: albino plantlet regeneration of Zhoumai 18; C: green plantlet regeneration of CB037; D: albino plantlet regeneration and green plantlet regeneration of Shimai 4185."

Fig. 3

Plant regeneration from immature embryos in wheat genotypes CB037 (A), Yangmai 16 (B), Zhengmai 9023 (C), and Shimai 4185 (D)"

Fig. 4

Plant regeneration from the mature embryos of wheat genotypes CB037 (A), Lunxuan 987 (B), Kefeng 10 (C), and Kefeng 12 (D)"

Table 2

Callus differentiation and plantlet regeneration from mature embryo tissues in different wheat genotypes"

Mature embryos
分化愈伤组织数 Differentiated calli 再生绿苗数
Shoots regenerated
Differentiated calli rate (%)
Shoot produced rate (%)
CB037 764 412 621 54.73 84.34
新春6号 Xinchun 6 730 426 500 58.48 68.78
京冬8号 Jingdong 8 722 402 441 55.83 61.95
石麦4185 Shimai 4185 368 188 215 51.31 59.00
科农199 Kenong 199 346 198 181 57.16 52.34
轮选 987 Lunxuan 987 368 150 190 41.05 52.19
周麦18 Zhoumai 18 584 256 254 44.17 44.36
新冬20 Xindong 20 362 136 154 37.56 42.56
扬麦16 Yangmai 16 356 138 149 39.04 42.25
郑麦366 Zhengmai 366 360 148 150 41.11 41.65
鄂麦18 Emai 18 328 138 126 43.38 40.28
周麦22 Zhoumai 22 364 146 132 40.02 36.17
中麦895 Zhongmai 895 320 108 111 34.86 35.85
川麦42 Chuanmai 42 352 112 116 31.73 32.97
济麦22 Jimai 22 366 124 117 33.73 31.82
烟农19 Yannong 19 368 154 115 42.05 31.27
宁春4号 Ningchun 4 378 106 98 28.52 26.44
西农979 Xinong 979 464 130 114 27.63 23.91
矮抗58 Aikang 58 346 90 73 25.50 20.59
邯6172 Han 6172 468 90 103 16.86 19.79
龙麦30 Longmai 30 334 80 58 23.98 17.80
郑麦9023 Zhengmai 9023 484 90 71 18.62 14.73
内麦836 Neimai 836 216 18 28 7.66 14.30
克丰12 Kefeng 12 322 20 27 6.32 7.24
克丰10号 Kefeng 10 408 20 13 5.03 3.24
LSD0.01 15.25 28.47

Table 3

Correlation coefficient between tissue culture traits of different wheat explants"

Explant type
愈伤组织诱导 Callus induction 愈伤组织分化 Callus differentiation 植株再生 Plant regeneration
Immature embryo
Mature embryo
Immature embryo
Mature embryo
Immature embryo
Mature embryo
成熟胚 Mature embryo 0.18 1.00 0.30 1.00 0.51 1.00
花药 Anther -0.13 -0.14 0.42 0.33 0.32 0.53
[1] 叶兴国, 徐惠君, 杜丽璞, 何光源, 王轲, 林志珊. 小麦规模化转基因技术体系构建及其应用. 中国农业科学, 2014, 47: 4155-4171
Ye X G. Xu H J, Du L P, He G Y, Wang K, Lin Z S.Establishment and application of large-scale transformation systems in wheat.Sci Agric Sin, 2014, 47: 4155-4171 (in Chinese with English abstract)
[2] 韩晓峰, 陶丽莉, 殷桂香, 刘晓蕾, 杜丽璞, 魏亦勤, 晏月明, 叶兴国. 基因型和环境条件对小麦花药培养效果的影响. 作物学报, 2010, 36: 1209-1215
Han X F, Tao L L, Yin G X, Liu X L, Du L P, Wei Y Q, Yan Y M, Ye X G.Effect of genotype and growing environment on anther culture in wheat.Acta Agron Sin, 2010, 36: 1209-1215 (in Chinese with English abstract)
[3] She M Y, Yin G X, Li J R, Li X, Du L P, Ma W J, Ye X G.Efficient Regeneration potential is closely related to auxin exposure time and catalase metabolism during the somatic embryogenesis of immature embryos inTriticum aestivum L. Mol Biotechnol, 2013, 54: 451-460
[4] Mathias R J, Fukui K, Law C.Cytoplasmic effects on the tissue culture response of wheat (Triticum aestivum) callus. Theor Appl Genet, 1986, 72: 70-75
[5] He D, Yang Y, Scott K.A comparison of scutellum callus and epiblast callus induction in wheat: the effect of genotype, embryo age and medium.Plant Sci, 1988, 57: 225-233
[6] Stober A, Hessu D.Spike pretreatments, anther culture conditions, and anther culture response of 17 German varieties of spring wheat (Triticum aestivum L.). Plant Breed, 1997, 116: 443-447
[7] Mendoza M G, Kaeppler H F.Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev-Pl, 2002, 38: 39-45
[8] Varshney A, Altpeter F.Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Mol Breed, 2002, 8: 295-309
[9] Turhan H, Baser I.Callus induction from mature embryo of winter wheat (Triticum aestivum L.). Asian J Plant Sci, 2004, 3: 17-19
[10] Sharma V, Hänsch R, Mendel R, Schulze J.Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long‐term retention of morphogenecity using meristematic shoot segments. Plant Breed, 2005, 124: 242-246
[11] 叶兴国, 徐惠君, 徐琼芳, 杜丽璞, 李志武. 小麦花药培养力的基因型差异和配合力分析. 中国农业科学, 1997, 30(6): 49-54
Ye X G, Xu H J, Xu Q F, Du L P, Li Z W.Genetic analysis and combining ability evaluation of the anther culture response in common wheat.Sci Agric Sin, 1997, 30(6): 49-54 (in Chinese with English abstract)
[12] Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T.Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures.Plant Cell, Tiss Org, 1998, 53: 67-74
[13] Shah M, Khalid Q, Khan U, Shah S, Shah S, Hassan A, Pervez A, Oliveira V, Caxito F, Gomes K.Variation in genotypic responses and biochemical analysis of callus induction in cultivated wheat. Genet Mol Res, 2009, 8: 783-793
[14] Yin G X, Wang Y L, She M Y, Du L P, Xu H J, Ma J X, Ye X G.Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agric Sci China, 2011, 10: 9-17
[15] Zamani I, Gouli Vavdinoudi E, Kovacs G, Xynias I, Roupakias D, Barnabas B.Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids.Plant Breed, 2003, 122: 314-317
[16] Ozias A P, Vasil I K.Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L.(wheat): evidence for somatic embryogenesis. Protoplasma, 1982, 110: 95-105
[17] Bi R M, Kou M, Chen L G, Mao S R, Wang H G.Plant regeneration through callus initiation from mature embryo ofTriticum. Plant Breed, 2007, 126: 9-12
[18] Arzani A, Mirodjagh S S.Response of durum wheat cultivars to immature embryo culture, callus induction andin vitro salt stress. Plant Cell, Tiss Org, 1999, 58: 67-72
[19] Szakács E, Kovács G, Pauk J, Barnabás B.Substitution analysis of callus induction and plant regeneration from anther culture in wheat (Triticum aestivum L.). Plant Cell Rep, 1988, 7: 127-129
[20] Liu W G, Zheng M Y, Enrique A P, Calvin F K.Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci, 2002, 42: 686-692
[21] Tuvesson I K D, Pedersen S, Andersen S B. Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor Appl Genet, 1989, 78: 879-883
[22] Buyser D J, Hachemi-Rachedi S, Lemee M L, Sejourne S, Marcotte J J, Henry Y.Aneuploid analysis of anther culture response in wheat.Plant Breed, 1992, 109: 339-342
[23] Jia H Y, Yu J, Yi D L, Cheng Y, Xu W Q, Zhang L X, Ma Z Q.Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell, Tiss Org, 2009, 97: 159-165
[24] Jia H Y, Yi D L, Yu J, Xue S L, Xiang Y, Zhang C Q, Zhang Z Z, Zhang L, Ma Z Q.Mapping QTLs for tissue culture response of mature wheat embryos. Mol Cells, 2007, 23: 323-330
[25] Pellegrineschi A, Noguera L M, Skovmand B, Brito R M, Velazquez L, Salgado M M, Hernandez R, Warburton M L, Hoisington D A.Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants.Genome, 2002, 45: 421-430
[26] Khanna H, Daggard G.Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep, 2003, 21: 429-436
[27] Greer M S, Kovalchuk I, Eudes F.Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation ofTriticum aestivum. New Biotechnol, 2009, 26: 44-52
[28] Ishida Y, Tsunashima M, Hiei Y, Komari T.Wheat (Triticum aestivum L.) transformation using immature embryos. In: Agrobacterium Protocols: Volume 1. Methods in Molecular Biology vol. 1223, (Wang K ed) New York: Springer Science+ Business Media, 2015. pp 189-198
[29] Zhou H, Berg J D, Blank S E, Chay C A, Chen G, Eskelsen S R, Fry J E, Hoi S, Hu T, Isakson P J, Lawton M B, Metz S G, Rempel C B, Ryerson D K, Sansone A P, Shook A L, Starke R J, Tichota J M, Valenti S A.Field efficacy assessment of transgenic roundup ready wheat.Crop Sci, 2003, 43: 1072-1075
[30] Stokstad E.Biotechnology-Monsanto pulls the plug on genetically modified wheat.Science, 2004, 304: 1088-1089
[31] 叶兴国, 徐惠君, 赵乐莲, 杜丽璞. 组织培养途径改良定型小麦品种的研究. 作物学报, 1998, 24: 310-314
Ye X G, Xu H J, Zhao L L, Du L P.Studies on improving wheat cultivars by tissue culture.Acta Agron Sin, 1998, 24: 310-314 (in Chinese with English abstract)
[32] 叶兴国, 徐惠君, 杜丽璞, 辛志勇. 小麦遗传转化几个因素的研究. 中国农业科学, 2001, 34: 128-132
Ye X G, Xu H J, Du L P, Xin Z Y.Studies on the factors influencing the efficiency of wheat transformation.Sci Agric Sin, 2001, 34: 128-132 (in Chinese with English abstract)
[33] Zhang W, Wang X M, Fan R, Yin G X, Wang K, Du L P, Xiao L L, Ye X G.Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos.J Integr Agric, 2015, 14: 11-19
[34] 叶兴国, 佘茂云, 王轲, 杜丽璞, 徐惠君. 植物组织培养再生相关基因鉴定、克隆和应用研究进展. 作物学报, 2012, 38: 191-201
Ye X G, She M Y, Wang K, Du L P, Xu H J.Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agron Sin, 2012, 38: 191-201 (in Chinese with English abstract)
[35] Wang X M, Wang K, Li J R, Du L P, Li J R, Xu H J, Ye X G.Effects of environmental temperature on the regeneration frequency of the immature embryos of wheat (Triticum aestivum L.). J Integr Agric, 2014, 13: 722-732
[36] Chauhan H, Khurana P.Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J, 2011, 9: 408-417
[37] Wang Y L, Xu M X, Yin G X, Tao L L, Wang D W, Ye X G.Transgenic wheat plants derived fromAgrobacterium-mediated transformation of mature embryo tissues. Cereal Res Commun, 2009, 37: 1-12
[38] Li J R, Ye X G, An B Y, Du L P, Xu H J.Genetic transformation of wheat: current status and future prospects.Plant Biotechnol Rep, 2012, 6: 183-193
[39] Tao L L, Yin G X, Du L P, Shi Z Y, She M Y, Xu H J, Ye X G.Improvement of plant regeneration from immature embryos of wheat infected byAgrobacterium tumefaciens. Agric Sci China, 2011, 10: 317-326
[40] Richardson T, Thistleton J, Higgins T J, Howitt C, Ayliffe M.EfficientAgrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tiss Organ, 2014, 119: 647-659
[41] Wang K, Liu H Y, Du L P, Ye X G.Generation of marker-free transgenic hexaploid wheat via anAgrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J, 2017, 15: 614-623
[42] 张云龙, 王美蛟, 张悦, 褚翠萍, 林志珊, 徐琼芳, 叶兴国, 陈孝, 张宪省. 不同簇毛麦6VS染色体臂的白粉病抗性特异功能标记的开发及应用. 作物学报, 2012, 38: 1827-1832
Zhang Y L, Wang M J, Zhang Y, Chu C P, Lin Z S, Xu Q F, Ye X G, Chen X, Zhang X S.Development and application of functional markers specific to powdery mildew resistance on chromosome arm 6VS from different origins ofHaynaldia villosa. Acta Agron Sin, 2012, 38: 1827-1832 (in Chinese with English abstract)
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] WANG Na, BAI Jian-Fang, MA You-Zhi, GUO Hao-Yu, WANG Yong-Bo, CHEN Zhao-Bo, ZHAO Chang-Ping, ZHANG Ling-Ping. Cloning and expression analysis of lncRNA27195 and its target gene TaRTS in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(8): 1417-1426.
Full text



No Suggested Reading articles found!