Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1875-1881.doi: 10.3724/SP.J.1006.2018.01875
• RESEARCH NOTES • Previous Articles Next Articles
Chang-You LIU1,Qiu-Zhu SU1,Bao-Jie FAN1,Zhi-Min CAO1,Zhi-Xiao ZHANG1,Jing WU2,Xu-Zhen CHENG2,Jing TIAN1,*()
[1] |
Yao Y, Cheng X, Ren G . A 90-day study of three bruchid-resistant mungbean cultivars in Sprague-Dawley rats. Food Chem Toxicol, 2015,76:80-85
doi: 10.1016/j.fct.2014.11.024 pmid: 25533792 |
[2] |
王丽侠, 程须珍, 王素华 . 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009,42:1519-1527
doi: 10.3864/j.issn.0578-1752.2009.05.003 |
Wang L X, Cheng X Z, Wang S H . Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.), Sci Agric Sin, 2009,42:1519-1527 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.05.003 |
|
[3] |
程须珍, 王素华, 金达生, 杨又迪, 吴绍宇, 周吉红 . 绿豆抗豆象遗传的初步研究. 植物遗传资源学报, 2001,2(4):12-15
doi: 10.3969/j.issn.1672-1810.2001.04.003 |
Cheng X Z, Wang S H, Jin D S, Yang Y D, Wu S Y, Zhou J H . Preliminary study on heredity of mungbean resistance to bruchid. J Plant Genet Resour, 2001,2(4):12-15 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2001.04.003 |
|
[4] | 刘长友, 田静, 范保杰, 曹志敏, 苏秋竹, 张志肖, 王素华 . 豇豆属3种主要食用豆类的抗豆象育种研究进展. 中国农业科学, 2010,43:2410-2417 |
Liu C Y, Tian J, Fan B J, Cao Z M, Su Q Z, Zhang Z X, Wang S H . Advances in breeding research on bruchid-resistant cultivars of three main Vigna food legumes. Sci Agric Sin, 2010,43:2410-2417 (in Chinese with English abstract) | |
[5] |
Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y . The effectiveness of evaluating wild species: searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000,115:27-41
doi: 10.1023/A:1003906715119 |
[6] |
金文林, 谭瑞娟, 王进忠, 张志勇, 刘长安, 濮绍京, 赵波 . 田间小豆绿豆象卵空间分布型初探. 植物保护, 2004,30(6):34-36
doi: 10.3969/j.issn.0529-1542.2004.06.008 |
Jin W L, Tan R J, Wang J Z, Zhang Z Y, Liu C A, Pu S J, Zhao B . Preliminary study on spatial distribution pattern of Callosobruchus Chinensis egg in adzuki bean field. Plant Prot, 2004,30(6):34-36 (in Chinese with English abstract)
doi: 10.3969/j.issn.0529-1542.2004.06.008 |
|
[7] | Fujii K, Miyazaki S . Infestation resistance of wild legumes (Vigna sublobata) to adzuki bean weevil, Callosobruchus chinensis( L.), 1987,22:229-230 |
[8] | Lambrides C J, Imrie B C . Susceptibility of mungbean varieties to the bruchid speciesCallosobruchus maculatus (F.), C. phaseoli, 2000,51:85-90 |
[9] |
Talekar N S, Lin C P . Characterization of Callosobruchus chinensis(Coleoptera: Bruchidae) resistance in mungbean. J Econ Entomol, 1992,85:1150-1153
doi: 10.1093/jee/85.4.1150 |
[10] | Somta C, Somta P, Tomooka N, Ooi A C, Vaughan D A, Srinives P . Characterization of new sources of mungbean (Vigna radiata(L.) Wilczek) resistance to bruchids, Callosobruchus spp., 2008,44:316-321 |
[11] | Kitamura K, Ishimoto M, Sawa M . Inheritance of resistance to infestation with adzuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Jpn J Breed, 2008,38:459-464 |
[12] |
Kaga A, Ishimoto M . Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol Genet Genomics, 1998,258:378-384
doi: 10.1007/s004380050744 pmid: 9648742 |
[13] |
Chen H M, Ku H M, Schafleitner R, Bains T S, Kuo G C, Liu C A, Nair R M . The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata(L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica, 2013,192:205-216
doi: 10.1007/s10681-012-0831-9 |
[14] |
Somta P, Ammaranan C, Ooi P, Srinives P . Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata, L. Wilczek). Euphytica, 2007,155:47-55
doi: 10.1007/s10681-006-9299-9 |
[15] |
Young N D, Kumar L, Menancio-Hautea D, Danesh D . RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata, L. Wilczek). Theor Appl Genet, 1992,84:839-844
doi: 10.1007/BF00227394 pmid: 24201484 |
[16] |
Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J . Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet, 2004,110:151-156
doi: 10.1007/s00122-004-1821-7 pmid: 15490104 |
[17] |
Mei L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Sun L, Xu N, Humphry M E, Lambrides C J, Li H B, Liu C J . Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. Genome, 2009,52:589-596
doi: 10.1139/G09-031 pmid: 19767890 |
[18] |
Wang L, Wu C, Zhong M, Zhao D, Mei L, Chen H, Wang S, Liu C, Cheng X . Construction of an integrated map and location of a bruchid resistance gene in mungbean. Crop J, 2016,4:360-366
doi: 10.1016/j.cj.2016.06.010 |
[19] | 孙蕾, 程须珍, 王素华, 王丽侠, 刘长友, 梅丽, 徐宁 . 栽培绿豆V2709抗豆象特性遗传及基因初步定位. 中国农业科学, 2008,41:1291-1296 |
Sun L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Mei L, Xu N . Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Sci Agric Sin, 2008,41:1291-1296 (in Chinese with English abstract) | |
[20] |
Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P . A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: bruchidae) resistance in mungbean (Vigna radiata). Theor Appl Genet, 2016,129:1673-1683
doi: 10.1007/s00122-016-2731-1 pmid: 27220975 |
[21] |
Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P . Novel Alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br Locus that confer bruchid (Callosobruchus spp.) resistance to mungbean(Vigna radiata) accession V2709. Front Plant Sci, 2017,8:1692
doi: 10.3389/fpls.2017.01692 pmid: 29033965 |
[22] |
Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, Wu J, Tian J . A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet, 2016,95:527-535
doi: 10.1007/s12041-016-0663-9 pmid: 27659323 |
[23] |
Liu C, Wu J, Wang L, Fan B, Cao Z, Su Q, Zhang Z, Wang Y, Tian J, Wang S . Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theor Appl Genet, 2017,130:2375-2393
doi: 10.1007/s00122-017-2965-6 pmid: 28831522 |
[24] |
Gwag J G, Chung J W, Chung H K, Lee J H, Kyung-Ho M A, Dixit A, Park Y J, Cho E G, Kim T S, Lee S H . Characterization of new microsatellite markers in mung bean,Vigna radiata(L.). Mol Ecol Notes, 2007,6:1132-1134
doi: 10.1111/j.1471-8286.2006.01461.x |
[25] |
Somta P, Seehalak W, Srinives P . Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet, 2009,10:1939-1943
doi: 10.1007/s10592-009-9860-x |
[26] |
Grisi M C, Blair M W, Gepts P, Brondani C, Pereira P A, Brondani R P . Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93×Jalo EEP558. Genet Mol Res, 2007,6:691-706
doi: 10.1590/S1415-47572007000600029 pmid: 18050090 |
[27] |
Meng L, Li H, Zhang L, Wang J . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283
doi: 10.1016/j.cj.2015.01.001 |
[28] |
Kosambi D D . The estimation of map distances from recombination values. Ann Hum Genet, 1943,12:172-175
doi: 10.1111/j.1469-1809.1943.tb02321.x |
[29] |
Li H, Ribaut J M, Li Z, Wang J . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260
doi: 10.1007/s00122-007-0663-5 pmid: 17985112 |
[30] |
Voorrips R E . MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78
doi: 10.1093/jhered/93.1.77 pmid: 12011185 |
[31] |
Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B K, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J G, Moon J K, Lee Y H, Park B S, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S H . Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun, 2014,5:5443, doi: 10.1038/ ncomms6443
doi: 10.1038/ncomms6443 pmid: 25384727 |
[32] |
Hong M G, Kilhyun K, Jahwan K, Jinkyo J, Minjung S, Changhwan P, Yulho K, Hongsik K, Yongkwon K, Sohyeon B . Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean (Vigna radiata L. Wilczek). Plant Breed Biotech, 2015,3:39-46
doi: 10.9787/PBB.2015.3.1.039 |
[33] |
Liu M S, Kuo T C Y, Ko C Y, Wu D Y, Li K S, Lin W J, Ko C Y, Lin C P, Wang Y W, Schafleitner R, Lo H F, Chen C Y, Chen L F O . Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol, 2016,16:46
doi: 10.1186/s12870-016-0736-1 pmid: 26887961 |
[34] | Vasconcellos R C, Lima T F, Fernandesbrum C N, Chalfunjunior A, Santos J B . Expression and validation of pvpgip genes for resistance to white mold(Sclerotinia sclerotiorum) in common beans, 2016,15:15038269 |
[35] |
D'Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, Lorenzo G D . Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol, 2004,135:2424-2435
doi: 10.1104/pp.104.044644 pmid: 15299124 |
[36] | Yamaguchi-Shinozaki K, Shinozaki K . The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet, 1993,238:17-25 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[4] | HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[7] | LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401. |
[8] | HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196. |
[9] | WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868. |
[10] | WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859. |
[11] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[12] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[13] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[14] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[15] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
|