Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1875-1881.doi: 10.3724/SP.J.1006.2018.01875

• RESEARCH NOTES • Previous Articles     Next Articles

Genetic Mapping of Bruchid Resistance Gene in Mungbean V1128

Chang-You LIU1,Qiu-Zhu SU1,Bao-Jie FAN1,Zhi-Min CAO1,Zhi-Xiao ZHANG1,Jing WU2,Xu-Zhen CHENG2,Jing TIAN1,*()   

  1. 1 Institute of Food and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Hebei Laboratory of Crop Genetic and Breeding, Shijiazhuang 050031, Hebei, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2018-05-08 Accepted:2018-08-20 Online:2018-12-12 Published:2018-09-18
  • Contact: Jing TIAN E-mail:nkytianjing@163.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(31601367);the China Agriculture Research System(CARS-08);the Science and Technology Program of HebeiProvince (F18R494004-01).(16227508D);the Modern Agricultural Science and Technology Innovation Program of Hebei Province(F18R494004-01)

Abstract:

It is an urgent research topic to map the bruchid resistance gene and to carry out bruchid resistance breeding using molecular marker-assisted method in mungbean. This study was carried out to identify a F2 isolated group formed by the hybrid of a bruchid-resistant cultivar “V1128” and a bruchid-susceptible cultivar “Jilyu 7”, and to analyze the genetic regularity of V1128 in resistance to bruchids. The bulked segregant analysis (BSA) method was used for screening the polymorphic markers. Genetic linkage map construction and quantitative trait locus (QTL) mapping were conducted using software QTL IciMapping 4.0. The results showed that the bruchid resistance of V1128 was controlled by a dominant gene with main effect. According to previous naming rules, the bruchid resistance gene of V1128 was temporarily named as “Br3”. When we treated bruchid-resistance as a quality trait, Br3 was used as a marker for linkage map construction and was positioned between the markers DMB158 and VRBR-SSR033 (VRID5, VRBR-SSR032, and VRBR-SSR033 are located at the same map position). The genetic distances of Br3 away from the two markers were 4.4 cM and 5.8 cM, respectively. Br3 was positioned on chromosome 5 in the physical range of about 288 kb. By using the inclusive composite interval mapping (ICIM) to locate the seed damage rate, a main QTL locus with LOD score of 38.04 was identified in the marker intervals from DMB158 to VRBR-SSR033, contributing 71.64% of the observed phenotypic variation. The allele of male parent V1128 had a significant effect on reducing the rate of seed damage. The results can provide useful information for the molecular marker-assisted breeding of mungbean, and the fine localization and cloning of Br3.

Key words: mungbean, bruchid resistance, V1128, Br3, QTL

Table 1

Information of polymorphic DNA markers used in this study"

标记名称
Marker
标记类型
Type
引物序列
Primer sequence (5′-3′)
退火温度
Tm
文献来源
Reference
Mchr5-17 SSR F: GCTTGCTTATGCTCAAAACT; R: TACAGATAAACCCAAGCCAT 55 [23]
Mchr5-20 SSR F: TCAAAACTTTCACTGGACCT; R: GCTGTTTGTCACATGCATAA 55 [23]
Mchr5-23 SSR F: ATCTTAATCCCATCCTTGGT; R: AACTGGCTTGTAAGGTGAGA 55 [23]
Mchr5-25 SSR F: CCGTTGTGAATCAACTTTTC; R: GAGTCGTCGTGTAATCCTTC 55 [23]
Mchr5-32 SSR F: ACTTGTAGGTGGAAGAGATGA; R: GATTAAGGGCGTGTTTTGT 55 [23]
Mchr5-33 SSR F: CTAATGAAACAGGACAAGGG; R: CTCACTCTTCTCATTCCACC 55 [23]
Mchr5-36 SSR F: ACCTACTGATTGGTGTTTGG; R: CAGTGAATGCTGACAGTGAC 55 [23]
Mchr5-37 SSR F: AACGGTTGGAGTTAGGAAAT; R: TGAACATCACCAACTATCAC 55 [23]
Mchr3-85 SSR F: AACAGCGTTGATTTATGGAC; R: AATCATGTTGGTGTGTTGTG 55 [23]
Mchr3-86 SSR F: TGCCTAAGGGTCAATTTCTA; R: ATGCACCAGAAGACAAAAAC 55 [23]
Mchr3-87 SSR F: AATGAGGTAATGCAGAGGTG; R: GACAAGGGTTGTTGTTCACT 55 [23]
Mchr3-89 SSR F: GAATTAAAGCCCTTGTTCTG; R: GGTGAATTTTCTGTTTCCAC 55 [23]
Mchr3-96 SSR F: CTGATGCTATTTCCATCCAT; R: TAACCTTTTGCATTTGGTGC 55 [23]
MUS150 SSR F: GCTGTTTGTCACATGCATAA; R: TCAAAACTTTCACTGGACCT 55 [23]
MUS365 SSR F: TGAGCCCGATTTTTATCTC;R: GCTCACAGATAACTGACACAAC 55 [23]
MUS569 SSR F: GGAGGGGATTTTTAAGATTG; R: GGATACGATTTTGTCGTGTT 55 [23]
HAAS_VR_379 SSR F: CCTATCCGAATCGACACCAC; R: GTAGCAATAGCAGCCCAAGG 55 [22]
HAAS_VR_106 SSR F: ACGGCTATTCATCGTTTTGC; R: CAACCCGAAGCCAAAAACTA 55 [22]
HAAS_VR_89 SSR F: GCTGGAAGGATCCAATTTCA; R: TCGCCATTCCCAAGATAAAG 55 [22]
HAAS_VR_1701 SSR F: CCGGGGTGAAATTGATACAC; R: CAAAGGGGCTATGAACAGGA 55 [22]
VRID1 Indel F: TCGGTTTCAGCTCGATAGATTC; R: GATGTTGTCTGAAGTAGTGGTA 55 [21]
VRID5 Indel F: AGAATAAAATGAATCTAGAAGACCA; R: TGAATTAATTTTCTTACCCTTGT 50 [21]
VRBR-SSR016 SSR F: GACGGCTAGGTACAACACTGC; R: TTTAGAGCAATTGGGTGGATTT 55 [20]
VRBR-SSR024 SSR F: TTTTGTGGACACTCCTTCCA; R: AAGCGTCACACCCTCAATTC 55 [20]
VRBR-SSR030 SSR F: CAGCTAGGAAACTCACCAAACC; R: CAGCTGGCAGGTGAAATATG 55 [20]
VRBR-SSR032 SSR F: GGTTATTTTGATCTAAAGGGCCA; R: GTGTGAGAAGATTTGGGAATGTAA 55 [20]
VRBR-SSR033 SSR F: CTCAAGTCTTATGTTTCCCCCTAT; R: GCACTAAAGGACTTTCCTTGAAC 55 [20]
VRBR-SSR039 SSR F: AAGTTGGTGTAGCACTTGCAGA; R: AATGAATTAAAAGAAAACACTACTG 55 [20]
GBssr-MB87 SSR F: TCCCTTGTGGGAGATCCT; R: CTTTGCCACACTCCTTGC 55 [24]
DMB158 SSR F: TGGAAAATTTGCAGCAGTTG; R: ATTGATGGAGGGCGGAAGTA 55 [25]
PVBR201 SSR F: GTGATGGTGCTGCTTTTCAA; R: ATGCGTGGGGAGAAGTAAGA 50 [26]

Fig. 1

Distribution of seed damage rate in F2 population"

Fig. 2

Positioning analysis of the bruchids resistance gene Br3 Linkage map constructed by using QTL IciMapping 4.0 software, LOD=5; map distances (cM) and marker names are shown on the left and right sides of the linkage group, respectively."

Fig. 3

Location of QTL qBr3 controlling resistance to bruchids QTL mapping based on inclusive composite interval mapping method (ICIM) using QTL IciMapping 4.0 software; map distances (cM) and marker names are shown on the left and right sides of the linkage group, respectively; the vertical line shows the LOD threshold (3.18)."

Fig. 4

Collinearity comparison analysis of QTL mapping results A synteny map between the genetic linkage map from this study and the linkage map constructed by Kaewwongwal et al. [21], this map was drown using MapChart 2.2 software [30] based on seven common markers; the scale bars on the left of the figure indicate the length of each linkage group in cM; “LG1” is the linkage group constructed in this study, “LG2” was constructed by Kaewwongwal et al.; the names of QTLs are shown in italics."

Table 2

Genes annotation in the range of bruchids resistance site of V1128"

基因序号
Gene ID
基因位置
Gene location
基因注释
Gene annotation
LOC106760111 5 338 753…5 340 435 RD22类蛋白 RD22-like protein
LOC106761406 5 346 646…5 349 613 未知蛋白 Uncharacterized protein
LOC106760112 5 361 741…5 362 985 未知蛋白 Uncharacterized protein
LOC106761824 5 367 108…5 367 592 RD22类蛋白 RD22-like protein
LOC106761559 5 389 064…5 390 972 RD22类蛋白 RD22-like protein
LOC111241568 5 403 161…5 404 109 未知蛋白 Uncharacterized protein
LOC106760880 5 409 223…5 413 311 RD22类蛋白 RD22-like protein
LOC106761219 5 511 814…5 514 459 RD22类蛋白 RD22-like protein
LOC106760236 5 561 973…5 563 546 多聚半乳糖醛酸酶抑制剂类蛋白(VrPGIP1) Polygalacturonase inhibitor-like (VrPGIP1)
LOC106760237 5 590 847…5 591 984 多聚半乳糖醛酸酶抑制剂类蛋白(VrPGIP2) Polygalacturonase inhibitor-like (VrPGIP2)
LOC106760238 5 590 527…5 598 757 假基因 Pseudogene
[1] Yao Y, Cheng X, Ren G . A 90-day study of three bruchid-resistant mungbean cultivars in Sprague-Dawley rats. Food Chem Toxicol, 2015,76:80-85
doi: 10.1016/j.fct.2014.11.024 pmid: 25533792
[2] 王丽侠, 程须珍, 王素华 . 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009,42:1519-1527
doi: 10.3864/j.issn.0578-1752.2009.05.003
Wang L X, Cheng X Z, Wang S H . Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.), Sci Agric Sin, 2009,42:1519-1527 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.05.003
[3] 程须珍, 王素华, 金达生, 杨又迪, 吴绍宇, 周吉红 . 绿豆抗豆象遗传的初步研究. 植物遗传资源学报, 2001,2(4):12-15
doi: 10.3969/j.issn.1672-1810.2001.04.003
Cheng X Z, Wang S H, Jin D S, Yang Y D, Wu S Y, Zhou J H . Preliminary study on heredity of mungbean resistance to bruchid. J Plant Genet Resour, 2001,2(4):12-15 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2001.04.003
[4] 刘长友, 田静, 范保杰, 曹志敏, 苏秋竹, 张志肖, 王素华 . 豇豆属3种主要食用豆类的抗豆象育种研究进展. 中国农业科学, 2010,43:2410-2417
Liu C Y, Tian J, Fan B J, Cao Z M, Su Q Z, Zhang Z X, Wang S H . Advances in breeding research on bruchid-resistant cultivars of three main Vigna food legumes. Sci Agric Sin, 2010,43:2410-2417 (in Chinese with English abstract)
[5] Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y . The effectiveness of evaluating wild species: searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000,115:27-41
doi: 10.1023/A:1003906715119
[6] 金文林, 谭瑞娟, 王进忠, 张志勇, 刘长安, 濮绍京, 赵波 . 田间小豆绿豆象卵空间分布型初探. 植物保护, 2004,30(6):34-36
doi: 10.3969/j.issn.0529-1542.2004.06.008
Jin W L, Tan R J, Wang J Z, Zhang Z Y, Liu C A, Pu S J, Zhao B . Preliminary study on spatial distribution pattern of Callosobruchus Chinensis egg in adzuki bean field. Plant Prot, 2004,30(6):34-36 (in Chinese with English abstract)
doi: 10.3969/j.issn.0529-1542.2004.06.008
[7] Fujii K, Miyazaki S . Infestation resistance of wild legumes (Vigna sublobata) to adzuki bean weevil, Callosobruchus chinensis( L.), 1987,22:229-230
[8] Lambrides C J, Imrie B C . Susceptibility of mungbean varieties to the bruchid speciesCallosobruchus maculatus (F.), C. phaseoli, 2000,51:85-90
[9] Talekar N S, Lin C P . Characterization of Callosobruchus chinensis(Coleoptera: Bruchidae) resistance in mungbean. J Econ Entomol, 1992,85:1150-1153
doi: 10.1093/jee/85.4.1150
[10] Somta C, Somta P, Tomooka N, Ooi A C, Vaughan D A, Srinives P . Characterization of new sources of mungbean (Vigna radiata(L.) Wilczek) resistance to bruchids, Callosobruchus spp., 2008,44:316-321
[11] Kitamura K, Ishimoto M, Sawa M . Inheritance of resistance to infestation with adzuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Jpn J Breed, 2008,38:459-464
[12] Kaga A, Ishimoto M . Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol Genet Genomics, 1998,258:378-384
doi: 10.1007/s004380050744 pmid: 9648742
[13] Chen H M, Ku H M, Schafleitner R, Bains T S, Kuo G C, Liu C A, Nair R M . The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata(L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica, 2013,192:205-216
doi: 10.1007/s10681-012-0831-9
[14] Somta P, Ammaranan C, Ooi P, Srinives P . Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata, L. Wilczek). Euphytica, 2007,155:47-55
doi: 10.1007/s10681-006-9299-9
[15] Young N D, Kumar L, Menancio-Hautea D, Danesh D . RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata, L. Wilczek). Theor Appl Genet, 1992,84:839-844
doi: 10.1007/BF00227394 pmid: 24201484
[16] Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J . Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet, 2004,110:151-156
doi: 10.1007/s00122-004-1821-7 pmid: 15490104
[17] Mei L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Sun L, Xu N, Humphry M E, Lambrides C J, Li H B, Liu C J . Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. Genome, 2009,52:589-596
doi: 10.1139/G09-031 pmid: 19767890
[18] Wang L, Wu C, Zhong M, Zhao D, Mei L, Chen H, Wang S, Liu C, Cheng X . Construction of an integrated map and location of a bruchid resistance gene in mungbean. Crop J, 2016,4:360-366
doi: 10.1016/j.cj.2016.06.010
[19] 孙蕾, 程须珍, 王素华, 王丽侠, 刘长友, 梅丽, 徐宁 . 栽培绿豆V2709抗豆象特性遗传及基因初步定位. 中国农业科学, 2008,41:1291-1296
Sun L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Mei L, Xu N . Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Sci Agric Sin, 2008,41:1291-1296 (in Chinese with English abstract)
[20] Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P . A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: bruchidae) resistance in mungbean (Vigna radiata). Theor Appl Genet, 2016,129:1673-1683
doi: 10.1007/s00122-016-2731-1 pmid: 27220975
[21] Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P . Novel Alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br Locus that confer bruchid (Callosobruchus spp.) resistance to mungbean(Vigna radiata) accession V2709. Front Plant Sci, 2017,8:1692
doi: 10.3389/fpls.2017.01692 pmid: 29033965
[22] Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, Wu J, Tian J . A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet, 2016,95:527-535
doi: 10.1007/s12041-016-0663-9 pmid: 27659323
[23] Liu C, Wu J, Wang L, Fan B, Cao Z, Su Q, Zhang Z, Wang Y, Tian J, Wang S . Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theor Appl Genet, 2017,130:2375-2393
doi: 10.1007/s00122-017-2965-6 pmid: 28831522
[24] Gwag J G, Chung J W, Chung H K, Lee J H, Kyung-Ho M A, Dixit A, Park Y J, Cho E G, Kim T S, Lee S H . Characterization of new microsatellite markers in mung bean,Vigna radiata(L.). Mol Ecol Notes, 2007,6:1132-1134
doi: 10.1111/j.1471-8286.2006.01461.x
[25] Somta P, Seehalak W, Srinives P . Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet, 2009,10:1939-1943
doi: 10.1007/s10592-009-9860-x
[26] Grisi M C, Blair M W, Gepts P, Brondani C, Pereira P A, Brondani R P . Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93×Jalo EEP558. Genet Mol Res, 2007,6:691-706
doi: 10.1590/S1415-47572007000600029 pmid: 18050090
[27] Meng L, Li H, Zhang L, Wang J . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283
doi: 10.1016/j.cj.2015.01.001
[28] Kosambi D D . The estimation of map distances from recombination values. Ann Hum Genet, 1943,12:172-175
doi: 10.1111/j.1469-1809.1943.tb02321.x
[29] Li H, Ribaut J M, Li Z, Wang J . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260
doi: 10.1007/s00122-007-0663-5 pmid: 17985112
[30] Voorrips R E . MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[31] Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B K, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J G, Moon J K, Lee Y H, Park B S, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S H . Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun, 2014,5:5443, doi: 10.1038/ ncomms6443
doi: 10.1038/ncomms6443 pmid: 25384727
[32] Hong M G, Kilhyun K, Jahwan K, Jinkyo J, Minjung S, Changhwan P, Yulho K, Hongsik K, Yongkwon K, Sohyeon B . Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean (Vigna radiata L. Wilczek). Plant Breed Biotech, 2015,3:39-46
doi: 10.9787/PBB.2015.3.1.039
[33] Liu M S, Kuo T C Y, Ko C Y, Wu D Y, Li K S, Lin W J, Ko C Y, Lin C P, Wang Y W, Schafleitner R, Lo H F, Chen C Y, Chen L F O . Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol, 2016,16:46
doi: 10.1186/s12870-016-0736-1 pmid: 26887961
[34] Vasconcellos R C, Lima T F, Fernandesbrum C N, Chalfunjunior A, Santos J B . Expression and validation of pvpgip genes for resistance to white mold(Sclerotinia sclerotiorum) in common beans, 2016,15:15038269
[35] D'Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, Lorenzo G D . Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol, 2004,135:2424-2435
doi: 10.1104/pp.104.044644 pmid: 15299124
[36] Yamaguchi-Shinozaki K, Shinozaki K . The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet, 1993,238:17-25
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[7] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[8] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[9] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[10] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[11] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[12] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[13] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[14] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[15] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!