Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (6): 922-931.doi: 10.3724/SP.J.1006.2019.83062


Characteristics of maize grain dehydration and prediction of suitable harvest period in Liao River Basin

Zhao-Fu HUANG1,2,*,Bo MING2,*,Ke-Ru WANG2,Rui-Zhi XIE2,Fei YANG1,Zhi-Gang WANG3,Chun-Hua XIAO1,*(),Shao-Kun LI1,2,*()   

  1. 1 College of Agronomy, Shihezi University / Key Laboratory of Oasis Eco-agriculture, Xinjiang Uygur Autonomous Region Production and Construction Group, Shihezi 832003, Xinjiang, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
    3 Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2018-08-20 Accepted:2019-01-12 Online:2019-06-12 Published:2019-06-12
  • Contact: Zhao-Fu HUANG,Bo MING,Chun-Hua XIAO,Shao-Kun LI E-mail:xiaochunhuaxj@163.com;lishaokun@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300803);the China Agriculture Research System(CARS-02-25);the Agricultural Science and Technology Innovation Project of CAAS.


Liao River Basin (LRB) is located in the south of the northeast China, mainly planting spring maize. The technology of grain mechanical harvesting is promoted based on the better thermal resources in LRB, but it is impeded by the higher grain moisture at harvest, higher grain broken rate and higher yield loss rate. In order to solve problem, characteristics of grain dehydration of main cultivars need to be researched and the suitable harvesting time ought to be determined based on the thermal resources. The study was aimed at selecting suitable cultivars and evaluating the quality of grain mechanical harvesting. In 2017, the 29 maize cultivars with different maturity periods were weed to investigate grain dehydration dynamics in Kailu county and Tieling county. On the basis of the analysis results of sowing date of perennial spring maize in the basin, growth and development of different varieties, demand of grain dehydration accumulated temperature and historical meteorological data, the prediction method of suitable mechanical grain harvest period for different varieties was established in LRB. Logistic Power model was used to match the dynamic process of grain dehydration of spring maize. There was a significant linear relationship between the actual grain moisture at harvest and the simulated grain moisture (R 2= 0.916, RMSE = 1.217), showing an excellent regional adaptability of this model. Using four cultivars suitable for grain mechanical harvest in 2017 national trial and two main cultivars grown in LRB, distribution regulations of the suitable harvest period were clarified. Among the four cultivars, the actively accumulated temperature requirements of Deyu 919 and Jingnongke 728 were less than 3122°C d from sowing to the stage with grain moisture reducing to 25%, showing that the better period of grain mechanical harvest was in the middle and late September in most parts of LRB. While the other two cultivars of Zeyu 8911 and Jidan66 had accumulated temperature requirements 3400°C d, and suitable harvest period in early October which was roughly 10-20 days behind there of the two former cultivars. As less than for the two main cultivars—Liaodan 575 and Jingke 968, their requirements of accumulated temperature were 200°C d more than there of Zeyu 8911 and Jidan66, which is difficult to achieve a high-quality mechanical grain harvesting at normal time. The research verified the application accuracy of the predicting model of grain moisture established based on Logistic Power model. Comparing the changes of grain moisture content, the accumulated temperature requirements to maturity and dehydration, and spatial distribution regulations of suitable period of grain mechanical harvesting between national trial cultivars and local main cultivars, and updating the existing cultivars and helpful to achieve high-quality mechanical grain harvesting in the LRB.

Key words: Liao River Basin, maize, grain dehydration dynamic, mechanical grain harvesting, grain harvesting period

Fig. 1

Distribution of thermal and water resources and test yields in Liaohe river basin"

Table 1

Hybrid in the experiment"

地点Location 品种 Hybrid
开鲁 金珠58, 德育919, 金庆202, 华美1号, 迪卡159, 东单913, ND865, 东单507, 泽玉501, S1651, 宏硕588, 泽玉8911, 东单1331, 金庆Q9, 德丰88, 优迪919, 世宾388, 翔玉998
Kailu Jinzhu 58, Deyu 919, Jinqing 202, Huamei 1, Dika 159, Dongdan 913, ND865, Dongdan 507, Zeyu 501, S1651, Hongshuo 288, Zeyu 8911, Dongdan 1331, Jinqing Q9, Dengfeng 88, Youdi 919, Shibin 388, Xiangyu 998
铁岭 丰垦139, 丹玉311, 铁研388, 宏育236, 吉单66, 泽玉501, 泽玉8911, 陕单636, 东单913, 东单1311, 华美1号, 中迪702, 中迪710, 翔玉998, 优迪919, 迪卡159, 辽单575, 京农科728, 京科968
Tieling Fengken 139, Danyu 311, Tieyan 388, Hongyu 236, Jidan 66, Zeyu 501, Zeyu 8911, Shaandan 636, Dongdan 913, Dongdan 1331, Huamei 1, Zhongdi 702, Zhongdi 710, Xiangyu 998, Youdi 919, Dika 159, Liaodan 575, Jingnongke 728, Jingke 968

Table 2

Parameters of water content-accumulated temperature equation of different cultivars"

b c R2 样本量
ND865 开鲁 Kailu 1265.97 2.25 0.98 19
泽玉501 Zeyu 501 开鲁, 铁岭 Kailu, Tieling 1093.89 1.66 0.98 18
世宾388 Shibin 388 开鲁 Kailu 1087.05 1.82 0.99 19
德丰88 Defeng 88 开鲁 Kailu 1085.03 2.27 0.99 19
优迪919 Youdi 919 开鲁, 铁岭 Kailu, Tieling 1081.16 1.75 0.98 18
中迪710 Zhongdi 710 铁岭 Tieling 1079.05 1.87 0.99 20
东单1331 Dongdan 1331 开鲁, 铁岭 Kailu, Tieling 1060.52 1.89 0.97 18
S1651 开鲁 Kailu 1053.26 1.73 0.99 19
迪卡159 Dika 159 开鲁, 铁岭 Kailu, Tieling 1051.99 1.49 0.98 18
金庆Q9 Jinqing Q9 开鲁 Kailu 1049.91 2.11 0.99 19
中迪702 Zhongdi 702 铁岭 Tieling 1040.69 2.17 0.98 20
丹玉311 Danyu 311 铁岭 Tieling 1039.33 1.65 0.97 20
宏硕588 Hongshuo 588 开鲁 Kailu 1025.91 1.85 0.99 19
翔玉998 Xiangyu 998 开鲁, 铁岭 Kailu, Tieling 1023.58 1.79 0.98 20
陕单636 Shaandan 636 铁岭 Tieling 1018.71 1.90 0.98 20
铁研388 Tieyan 388 铁岭 Tieling 1005.38 1.69 0.97 20
吉单66* Jidan 66* 铁岭 Tieling 1002.67 1.92 0.98 20
宏玉236 Hongyu 236 铁岭 Tieling 1002.67 1.92 0.98 20
丰垦139 Fengken 139 铁岭 Tieling 992.81 2.05 0.98 20
德育919* Deyu 919* 开鲁 Kailu Kailu, Tieling 986.47 2.22 0.99 19
京农科728* Jingnongke 728* 铁岭 Tieling 979.46 1.95 0.99 20
东单507 Dongdan 507 开鲁 Kailu 975.56 1.38 0.98 19
东单913 Dongdan 913 开鲁, 铁岭 Kailu, Tieling 973.42 1.46 0.98 18
辽单575 Liaodan 575 铁岭 Tieling 966.18 1.59 0.99 20
华美1号 Huamei 1 开鲁, 铁岭 Kailu, Tieling 957.27 1.78 0.96 18
泽玉8911* Zeyu 8911* 开鲁, 铁岭 Kailu, Tieling 946.40 1.87 0.99 18
金庆202 Jinqing 202 开鲁 Kailu 943.39 1.57 0.96 19
京科968 Jingke 968 铁岭 Tieling 859.91 1.30 0.97 20
金珠58 Jinzhu 58 开鲁 Kailu 845.78 1.69 0.96 19

Fig. 2

Relationships between observed and simulated moisture contents of different cultivars in mechanical grain harvest, which collected at seven locations in Liao River Basin from years 2013 to 2017"

Table 3

Accumulated temperature requirement during growth stages of different maize cultivars at different areas (°C d)"

Accumulated temperature from sowing
to silking
Accumulated temperature from silking to physiological maturity
Accumulated temperature from sowing to physiological maturity
Kailu county, Tongliao city, Inner Mongolia autonomous region
华美1号 Huamei 1 1623.7 1334.5 2938.2
迪卡159 Dika 159 1646.7 1552.9 3156.6
东单913 Dongdan 913 1624.6 1350.5 2954.2
泽玉501 Zeyu 501 1646.7 1520.0 3123.7
泽玉8911 Zeyu 8911 1646.7 1484.4 3088.1
东单1331 Dongdan 1331 1720.6 1617.7 3378.4
优迪919 Youdi 919 1695.8 1611.8 3378.4
翔玉998 Xiangyu 998 1695.8 1611.8 3378.4
Tieling county, Tieling city, Liaoning province
华美1号 Huamei 1 1616.9 1331.1 3078.2
迪卡159 Dika 159 1644.9 1550.2 3306.4
东单913 Dongdan 913 1644.9 1331.1 3087.2
泽玉501 Zeyu 501 1673.5 1550.2 3306.4
泽玉8911 Zeyu 8911 1644.9 1495.3 3251.4
东单1331 Dongdan 1331 1700.9 1683.3 3439.5
优迪919 Youdi 919 1700.9 1683.3 3439.5
翔玉998 Xiangyu 998 1700.9 1683.3 3439.5
区域间 Interregional ns ns ns
不同品种 Different hybrid * * *

Table 4

Demands for actively accumulated temperature at different stages of different maize cultivars (°C d)"

Silking-Physiological maturity
Silking-25% MC
Sowing-25% MC*
德育919 Deyu 919 237 1366 1351 1519 3122
京科728 Jingke 728 470 1126 1497 1582 3178
泽玉8911 Zeyu 8911 265 1411 1578 1655 3331
吉单66 Jidan 66 310 1395 1662 1651 3356
辽单575 Liaodan 575 379 1419 1655 1760 3558
京科968 Jingke 968 379 1529 1622 1789 3697

Fig. 3

Time map when grain moisture content reduces to 25% of four national trial maize cultivars suitable for mechanical grain harvesting in Liao River Basin"

Fig. 4

Time map when grain moisture content reduces to 25% of two main maize cultivars in Liao River Basin"

[1] 张东兴 . 农机农艺技术融合推动我国玉米机械化生产的发展. 农业技术与装备, 2011, ( 9):22-25.
Zhang D X . Integration of agricultural machinery and agricultural technology to promote the development of corn mechanized production in China. Agric Technol Equipment, 2011, ( 9):22-25 (in Chinese).
[2] 李少昆 . 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017,35:265-272.
Li S K . Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci), 2017,35:265-272 (in Chinese with English abstract).
[3] 李少昆, 王克如, 王延波, 赵海岩, 沈玉忠, 蔡丹丹, 肖万欣, 姜文野, 黄兆福, 翟立超, 谢瑞芝, 侯鹏, 明博 . 辽宁中部地区玉米机械粒收质量及其限制因素研究. 作物杂志, 2018, ( 3):162-167.
Li S K, Wang K R, Wang Y B, Zhao H Y, Shen Y Z, Cai D D, Xiao W X, Jiang W Y, Huang Z F, Zhai L C, Xie R Z, Hou P, Ming B . Research on the quality of maize mechanical grain harvest and its influencing factors in the middle Liaoning province. Crops, 2018, ( 3):162-167 (in Chinese with English abstract).
[4] 李少昆, 王克如, 高聚林, 李金琴, 黄兆福, 杨飞, 彭晓红, 姚振坤, 张国福, 张建军, 杨亚文, 王宇飞, 谢瑞芝, 侯鹏, 明博 . 内蒙古玉米机械粒收质量及其影响因素研究. 玉米科学, 2018,26(4):68-78.
Li S K, Wang K R, Gao J L, Li J Q, Huang Z F, Yang F, Peng X H, Yao Z K, Zhang G F, Zhang J J, Yang Y W, Wang Y F, Xie R Z, Hou P, Ming B . Study on maize mechanical grain harvest in Inner Mongolia. J Maize Sci, 2018,26(4):68-78 (in Chinese with English abstract).
[5] 王克如, 李少昆, 王延波, 赵海岩, 沈玉忠, 蔡丹丹, 肖万欣, 姜文野, 黄兆福, 翟立超, 李璐璐, 谢瑞芝, 侯鹏, 明博 . 辽宁中部适宜机械粒收玉米品种的筛选. 作物杂志, 2018, ( 3):97-102.
Wang K R, Li S K, Wang Y B, Zhao H Y, Shen Y Z, Cai D D, Xiao W X, Jiang W Y, Huang Z F, Zhai L C, Li L L, Xie R Z, Hou P, Ming B . Research on maize cultivar screening suitable for mechanical grain harvest in the middle Liaoning province. Crops, 2018, ( 3):97-102 (in Chinese with English abstract).
[6] 李少昆, 王克如, 谢瑞芝, 李璐璐, 明博, 侯鹏, 初振东, 张万旭, 刘朝巍 . 玉米子粒机械收获破碎率研究. 作物杂志, 2017, ( 2):76-80.
Li S K, Wang K R, Xie R Z, Li L L, Ming B, Hou P, Chu Z D, Zhang W X, Liu C W . Grain breakage rate of maize by mechanical harvesting in China. Crops, 2017, ( 2):76-80 (in Chinese with English abstract).
[7] 王克如, 李少昆 . 玉米籽粒机械收获破碎率研究进展. 中国农业科学, 2017,50:2018-2026.
Wang K R, Li S K . Progresses in research on grain broken rate by combine harvesting maize. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract).
[8] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械籽粒收获质量现状及其与水分含量的关系. 中国农业科学, 2017,50:2036-2043.
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract).
[9] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆 . 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017,50:2044-2051.
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K . Analysis of influential factors on mechanical grain harvesting quality of summer maize. Sci Agric Sin, 2017,50:2044-2051 (in Chinese with English abstract).
[10] 李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆 . 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018,44:1747-1754.
Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K . Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agron Sin, 2018,44:1747-1754 (in Chinese with English abstract).
[11] 赵明, 李少昆, 董树亭, 张东兴, 王璞, 薛吉全, 高聚林, 孙士明, 张吉旺, 刘鹏, 刘永红, 王永军 . 美国玉米生产关键技术与中国现代玉米生产发展的思考——赴美国考察报告. 作物杂志, 2011, ( 5):1-3.
Zhao M, Li S K, Dong S T, Zhang D X, Wang P, Xue J Q, Gao J L, Sun S M, Zhang J W, Liu P, Liu Y H, Wang Y J . The key technology of American maize production and the development of modern maize production in China—a study report after visiting the United States. Crops, 2011, ( 5):1-3 (in Chinese with English abstract).
[12] 李少昆 . 美国玉米生产技术特点与启示. 玉米科学, 2013,21(3):1-5.
Li S K . Characteristics and enlightenment of corn production technologies in the U.S. J Maize Sci, 2013,21(3):1-5 (in Chinese with English abstract).
[13] 刘显君, 王振华, 王霞, 李庭锋, 张林 . 玉米籽粒生理成熟后自然脱水速率QTL的初步定位. 作物学报, 2010,36:47-52.
Li X J, Wang Z H, Wang X, Li T F, Zhang L . Preliminary localization of natural dehydration rate QTL of maize kernel after physiological maturity. Acta Agron Sin, 2010,36:47-52 (in Chinese with English abstract).
[14] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, ( 2):88-92.
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Kernel moisture content of summer maize at physiological maturity in Huanghuaihai region. Crops, 2017, ( 2):88-92 (in Chinese with English abstract).
[15] Crane P L . Factors associated with varietal differences in rate of field drying in corn. Agron J, 1959,51:318-320.
doi: 10.2134/agronj1959.00021962005100060003x
[16] Plett S . Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Can J Plant Sci, 1994,74:543-544.
doi: 10.4141/cjps94-097
[17] Borrás L, Westgate M E . Predicting maize kernel sink capacity early in development. Field Crops Res, 2006,95:223-233.
doi: 10.1016/j.fcr.2005.03.001
[18] Gambin B L, Borras L, Otegui M E . Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2007,101:1-9.
doi: 10.1016/j.fcr.2006.09.001
[19] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50:2027-2035.
Wang K R, Li S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017,50:2027-2035 (in Chinese with English abstract).
[20] Maiorano A, Fanchini D, Donatelli M . MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels. Eur J Agron, 2014,59:86-95.
doi: 10.1016/j.eja.2014.05.011
[21] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆 . 夏玉米籽粒脱水特性及与灌浆特性关系的研究. 中国农业科学, 2018,50:1878-1889.
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K . Study on grain dehydration characteristics of maize and its relationship with grain filling. Sci Agric Sin, 2018,50:1878-1889 (in Chinese with English abstract).
[22] 张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆 . 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析. 中国农业科学, 2018,51:1890-1898.
Zhang W X, Ming B, Wang K R, Li C W, Hou P, Chen J L, Yang J J, Che S L, Xie R Z, Li S K . Analysis of the suitable sowing time and harvesting period of machine-harvested maize based on the characteristics of mature period and grain dehydration. Sci Agric Sin, 2018,51:1890-1898 (in Chinese with English abstract).
[23] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆 . 黄淮海夏玉米品种脱水类型与机械粒收时间的确立. 作物学报, 2018,44:1764-1773
Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K . The establishment of dehydration type and mechanical grain collecting time of Huang-Huai-Hai summer maize. Acta Agron Sin, 2018,44:1764-1773 (in Chinese with English abstract).
[24] 佟屏亚 . 中国玉米种植区划. 北京: 中国农业科技出版社, 1992. pp 6-16.
Tong P Y. Maize Plant District in China. Beijing: Chinese Agricultural Science and Technology Press, 1992. pp 6-16(in Chinese).
[25] 李依, 王秀芬, 杨艳昭, 林裕梅 . 西辽河流域玉米气候生产潜力变化分析. 农业现代化研究, 2018,39:239-247.
Li Y, Wang X F, Yang Y Z, Lin Y M . Analysis of change of climatic productivity potential of maize in Xiliao River Basin. Res Agric Modernization, 2018,39:239-247 (in Chinese with English abstract).
[26] China Meteorological Data Sharing Service System. National Meteorolgical Information Center.Beijing[ 2017-03-15]. .
[27] 李军, 游松财, 黄敬峰 . 中国1961-2000年月平均气温空间插值方法与空间分布. 生态环境, 2006,15(1):109-114.
Li J, You S C, Huang J F . Spatial in interpolation method and spatial distribution characteristics of monthly mean temperature in China during 1961-2000. Ecol Environ, 2006,15(1):109-114 (in Chinese with English abstract).
[28] 杨扬, 杨建宇, 李绍明, 张晓东, 朱德海 . 玉米生育期空间插值方法比较. 农业工程学报, 2009,25(9):163-167.
Yang Y, Yang J Y, Li S M, Zhang X D, Zhu D H . Comparison of spatial interpolation methods for maize growth period. Trans CSAE, 2009,25(9):163-167 (in Chinese with English abstract).
[29] Nielsen R L. Field dry down of mature corn grain. Corny News Network: Purdue University Department of Agronomy, 2011 [ 2018-06-08]. .
[30] Schmidt J L, Hallauer A R . Estimating harvest date of corn in the field. Crop Sci, 1966,6:227-231.
doi: 10.2135/cropsci1966.0011183X000600030003x
[31] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆 . 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018,44:1755-1763.
Gao S, Ming B, Li L L, Xie R Z, Xue J, Hou P, Wang K R, Li S K . Relationship between grain dehydration and meteorological factors in the Huang-Huai-Hai summer maize. Acta Agron Sin, 2018,44:1755-1763 (in Chinese with English abstract)
[32] 明博, 王克如, 谢瑞芝, 侯鹏, 李少昆 . 玉米子粒脱水研究与机械粒收对策. 作物杂志, 2018, ( 6):17-21.
Ming B, Wang K R, Xie R Z, Hou P, Li S K . Researches on maize Grain dehydration and countermeasures for mechanical grain harvesting. Crops, 2018, ( 6):17-21 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Full text



No Suggested Reading articles found!