Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 235-247.doi: 10.3724/SP.J.1006.2019.84063


Suppression mechanism of volatile sprout-inhibitors on potato tuber sprouting

Xue ZOU1,2,Fan DING1,Jin-Long YU1,Jie PENG2,Meng-Sheng DENG2,Yu WANG2,Li-Fang LIU1,Kai-Zong YU-HAN1,Nian-Wei CHEN1,Xi-Yao WANG2,*()   

  1. 1 Mianyang Academy of Agricultural Sciences, Mianyang 621023, Sichuan, China
    2 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2018-04-29 Accepted:2018-08-20 Online:2019-02-12 Published:2018-09-26
  • Contact: Xi-Yao WANG E-mail:wxyrtl@163.com
  • Supported by:
    This study was supported by the Breeding Program for Public Welfare of Science & Technology Department of Sichuan Province(2016NYZ0032);and the Innovation Fund of Mianyang Academy of Agricultural Sciences(cxjj462016-2019)


Tuber sprouting losses commercial value. In this experiment, the sprout inhibition abilities of naphthalene, camphor, menthol were researched and the acting mechanism by RNA-seq, iTRAQ was explained. The inhibition abilities showed a trend of menthol > camphor > naphthalene. The metabolic consumption was reduced due to sprouting inhibition and the tuber weight loss of menthol treatment was only 36% of the control loss in 180 days storage. Compared with the control, about 1227 (299) and 296 (204) genes and proteins whose expression levels were significantly up-regulated (or down-regulated) were detected respectively in sprouting tuber with camphor treatment for three days. Those genes and proteins mainly involved in response to stimulus and defense response. Transcripts of PEL, PME, PG related to pectin degradation, CYP77A6, HPFT, WES related to cutin synthesis, ACO related to synthesis of ethylene, and GATA4L coding transcription factor were upward with dormancy release during storage. Relative expression of those genes was stimulated at different degrees in camphor treatment at the early stage, but significantly inhibited at the middle and late stages, showing 0.68%-23.35% of the control expression at 49 days. Menthol treatment maintained these genes with low level expression in tuber, but significantly increased the expression of cell cycle inhibitor gene KRP4 to 15.9 times of control. Camphor treatment increased transcripts of genes WRKY75, STH-2, RBOH participating in plant-pathogen interaction pathway to the highest levels at sprouting stage. Therefore, we can conclude that camphor and menthol suppress the growth and development of sprouting tuber, eventually kill the bud and reduce the tuber weight loss during storage. Camphor treatment promotes the biosynthesis of protective substances to resist stress at the early stage and strengthen the resistance to pathogen infection at the sprouting stage; menthol treatment prevents bud sprouting by increasing KRP4 expression to inhibit cell division.

Key words: potato, storage, sprout-inhibitors, transcriptome, proteome

Fig. 1

Treatment schematics for the RNA-seq and iTRAQ experimental samples are listed"

Table 1

Primer sequences used in this study"

Primers (5°-3°)
Melt temp.
延伸因子EF1αL (内参Reference gene)
Elongation factor 1 alpha-like
155 81.5
果胶裂解酶 PEL
Pectate lyase
168 83.0
167 78.5
199 81.0
细胞色素P450, CYP77A6
Cytochrome P450, CYP77A6
141 84.0
Omega-hydroxypalmitate O-feruloyl
110 79.0
Diacylglycerol O-acyltransferase
295 81.5
AG-基序结合蛋白 GATA4L
GATA transcription factor 4-like
121 80.5
Kip相关蛋白4 KRP4
Kip-related protein 4
182 81.0
Aminocyclopropanecarboxylate oxidase
194 82.0
转录因子WRKY 75
WRKY transcription factor 75
131 77.5
Pathogenesis-related protein STH-2
99 79.0
呼吸爆发氧化酶(NADPH氧化酶) RBOH
Respiratory burst oxidase (NADPH oxidase)
168 82.5

Fig. 2

Sprouting inhibition comparison of different treatments at 50 days CK: control; NAP: naphthalene treatment; CAM: camphor treatment; MEN: menthol treatment."

Table 2

Shoot length and tuber weight loss of different treatments during storage"

芽长 Shoot length (mm) 块茎重量损失 Tuber weight loss (%)
50 d 65 d 80 d 60 d 120 d 180 d
CK 2.45±0.36 aA 6.02±0.37 A 14.29±1.33 A 6.68±0.36 aA 13.85±0.61 A 22.78±0.99 A
NAP 2.28±0.36 abA 2.23±0.27 B 2.06±0.47 B 6.97±0.58 aA 11.88±0.92 B 17.49±0.93 B
CAM 1.59±0.45 bA 1.31±0.20 C 凋亡Death 5.67±0.36 bAB 9.42±0.67 C 14.30±1.17 C
MEN 无芽生长 No bud growth 4.83±0.27 cB 7.37±0.55 D 8.14±1.01 D

Fig. 3

Quantitative RT-PCR validation of RNA-seq"

Fig. 4

Significant GO terms analysis of differentially expressed genes and proteins in camphor treatment"

Table 3

The first 10 pathways of differentially expressed genes in RNA-seq"

DEGs with pathway annotation
Pathway ID
谷胱甘肽代谢Glutathione metabolism 23↑ 1↓ 5.32E-08 ko00480
异黄酮生物合成Isoflavonoid biosynthesis 15↑ 0↓ 4.61E-05 ko00943
玉米素生物合成Zeatin biosynthesis 26↑ 2↓ 5.88E-05 ko00908
Stilbenoid, diarylheptanoid and gingerol biosynthesis
25↑ 10↓ 9.78E-05 ko00945
柠檬烯和蒎烯降解Limonene and pinene degradation 22↑ 5↓ 3.16E-04 ko00903
植物病原菌互作Plant-pathogen interaction 101↑ 8↓ 3.21E-04 ko04626
内质网蛋白质加工 Protein processing in endoplasmic reticulum 25↑ 15↓ 3.97E-04 ko04141
黄酮和黄酮醇生物合成Flavone and flavonol biosynthesis 21↑ 1↓ 9.68E-04 ko00944
苯丙素生物合成Phenylpropanoid biosynthesis 27↑ 10↓ 2.75E-03 ko00940
次生代谢物的生物合成 Biosynthesis of secondary metabolites 117↑ 37↓ 5.05E-03 ko01110

Fig. 5

Correlation analyses in GO enrichment of genes with same expression trend between transcriptional and proteomics groups"

Fig. 6

Effects of sprouting-inhibitors on the expression of genes related to pectin metabolism and cutin, suberine, wax biosynthesis CK: control; CAM: camphor treatment; MEN: menthol treatment; CK-4℃: control tuber storage at 4℃; the error line was the standard deviation of three repeated values."

Fig. 7

Effects of sprouting-inhibitors on the expression of genes related to growth The abbreviations of different treatments are the same as those given in Fig. 6; the error line was the standard deviation of three repeated values."

Fig. 8

Effects of sprouting-inhibitors on the expression of genes related to plant-pathogen interaction The abbreviations of different treatments are the same as those given in Fig. 6; the error line was the standard deviation of three repeated values."

Fig. 9

Acting pattern speculation of tuber response to camphor treatment Solid arrows: expression levels up-regulated compared with control; dotted arrows: expression levels down-regulated compared with control, the size of the arrow represented the degree of variability."

[1] 肖关丽, 郭华春 . 不同生理年龄马铃薯种薯芽中的内源激素含量变化及其对马铃薯植株生长发育的影响. 植物生理学报, 2007,43:818-820.
Xiao G L, Guo H C . Changes in endogenous hormone contents in bud of seed potato (Solanum tuberosum L.) with different physiological ages and its effect on growth and development. Plant Physiol J, 2007,43:818-820 (in Chinese with English abstract).
[2] Daniels-Lake B J, Pruski K, Prange R K . Using ethylene gas and chlorpropham potato sprout inhibitors together. Potato Res, 2011,54:223-236.
doi: 10.1007/s11540-011-9188-z
[3] Vijay P, Ezekiel R, Pandey R . Use of CIPC as a potato sprout suppressant: health and environmental concerns and future options. Qual Assur Safety Crops Foods, 2018,10:17-24.
doi: 10.3920/QAS2017.1088
[4] Gómez-Castillo D . Effects of essential oils on sprout suppression and quality of potato cultivars. Postharvest Biol Technol, 2013,82:15-21.
doi: 10.1016/j.postharvbio.2013.02.017
[5] Hartmans K J . The use of carvone in agriculture: sprout suppression of potatoes and antifungal activity against potato tuber and other plant diseases. Ind Crops Prod, 1995,4:3-13.
doi: 10.1016/0926-6690(95)00005-W
[6] Oosterhaven K, Poolman B, Smid E J . S-carvone as a natural potato sprout inhibiting, fungistatic and bacteristatic compound. Ind Crops Prod, 1995,4:23-31.
doi: 10.1016/0926-6690(95)00007-Y
[7] Teper-Bamnolker P, Dudai N, Fischer R, Belausov E, Zemach H, Shoseyov O, Eshel D . Mint essential oil can induce or inhibit potato sprouing by differential alteration of apical meristem. Planta, 2010,232:179-186.
doi: 10.1007/s00425-010-1154-5 pmid: 20390295
[8] Weerd J W, Thornton M K, Shafii B . Sprout suppressing residue levels of 1,4-dimethylnaphthalene (1,4DMN) in potato cultivars. Am J Potato Res, 2010,87:434-445.
doi: 10.1007/s12230-010-9146-3
[9] Campbell M A, Gleichsner A, Alsbury R, Horvath D, Suttle J . The sprout inhibitors chlorpropham and 1,4-dimethylnaphthalene elicit different transcriptional profiles and do not suppress growth through a prolongation of the dormant state. Plant Mol Biol, 2010,73:181-189.
doi: 10.1007/s11103-010-9607-6 pmid: 20135197
[10] Campbell M A, Gleichsner A, Hilldorfer L, Horvath D, Suttle J . The sprout inhibitor 1,4-dimethylnaphthalene induces the expression of the cell cycle inhibitors KRP1 and KRP2 in potatoes. Funct Integr Genomics, 2012,12:533-541.
doi: 10.1007/s10142-011-0257-9 pmid: 22113341
[11] Li L Q, Zou X, Deng M S, Peng J, Huang X L, Lu X, Fang C C, Wang X Y . Comparative morphology, transcription, and proteomics study revealing the key molecular mechanism of camphor on the potato tuber sprouting effect. Int J Mol Sci, 2017,18:2280.
doi: 10.3390/ijms18112280 pmid: 29084178
[12] Liu B L, Zhang N, Wen Y K, Jin X, Yang J W, Si H J, Wang D . Transcriptomic changes during tuber dormancy release process revealed by RNA sequencing in potato. J Biotechnol, 2015,198:17-30.
doi: 10.1016/j.jbiotec.2015.01.019 pmid: 25661840
[13] Yang Y, Qiang X, Owsiany K, Zhang S, Thannhauser T W, Li L . Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)- based proteomic analysis of potato tubers in response to cold storage. J Proteome Res, 2011,10:4647-4660.
doi: 10.1021/pr200455s pmid: 21842911
[14] The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature, 2011,475:189-195.
doi: 10.1038/nature10158 pmid: 21743474
[15] Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B . Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008,5:621-628.
doi: 10.1038/nmeth.1226
[16] 邹雪, 邓孟胜, 李立芹, 余金龙, 丁凡, 黄雪丽, 彭洁, 帅禹, 蔡诚诚, 王西瑶 . 油菜素内酯合成和信号转导基因在马铃薯块茎贮藏期间的表达变化及对萌芽的影响. 作物学报, 2017,43:811-820.
doi: 10.3724/SP.J.1006.2017.00811
Zou X, Deng M S, Li L Q, Yu J L, Ding F, Huang X L, Peng J, Shuai Y, Cai C C, Wang X Y . Expression changes of genes related to brassinosteroid biosynthesis and signal transduction during potato storage and its effect on tuber sprouting. Acta Agron Sin, 2017,43:811-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00811
[17] Dixon R A . Natural products and plant disease resistance. Nature, 2001,411:843-847.
doi: 10.1038/35081178
[18] Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H . Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell, 2007,19:1065-1080.
doi: 10.1105/tpc.106.048884 pmid: 17400895
[19] Baydar H, Karadoğan T . The effects of volatile oils on in vitro potato sprout growth. Potato Res, 2003,46:1-8.
doi: 10.1007/BF02736098
[20] 马进, 郑钢, 裴翠明, 张振亚 . 基于iTRAQ质谱分析技术筛选南方型紫花苜蓿根部响应盐胁迫差异表达蛋白. 农业生物技术学报, 2016,24:497-509.
doi: 10.3969/j.issn.1674-7968.2016.04.004
Ma J, Zheng G, Pei C M, Zhang Z Y . Screening differentially expressed proteins in southern type alfalfa (Medicago sativa ‘Millenium’) root upon salt stress by iTRAQ protein mass spectrometry. J Agric Biotechnol, 2016,24:497-509 (in Chinese with English abstract).
doi: 10.3969/j.issn.1674-7968.2016.04.004
[21] Takahashi K, Niwa H, Yokota N, Kubota K, Inoue H . Widespread tissue expression of nepenthesis-like aspartic protease genes in Arabidopsis thaliana. Plant Physiol Biol, 2008,46:724-729.
[22] 李合生 . 现代植物生理学(第3版). 北京: 高等教育出版社, 2012. pp 245-246.
Li H S . Modern Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2012. pp 245-246(in Chinese).
[23] Coleman W K, Dioxide C . Oxygen and ethylene effects on potato tuber dormancy release and sprout growth. Ann Bot, 1998,82:21-27
doi: 10.1006/anbo.1998.0645
[24] Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S . Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol, 2011,155:776-796.
doi: 10.1104/pp.110.168252 pmid: 21163959
[25] Külen O, Stushnoff C, Davidson R D, Holm D G . Gibberelllic acid and ethephon alter potato minituber bud dormancy and improve seed tuber yield. Am J Potato Res, 2011,88:167-174.
doi: 10.1007/s12230-010-9178-8
[26] Amita C, Sane V A, Nath P . Differential expression of pectate lyase during ethylene-induced postharvest softening of mango (Mangifera indica var. Dashehari). Physiol Planta, 2006,128:546-555.
doi: 10.1111/j.1399-3054.2006.00752.x
[27] Singh A P, Pandey S P, Rajluxmi, Pandey S, Nath P, Sane A P . Transcriptional activation of a pectate lyase gene,RbPel1, during petal abscission in rose. Postharvest Biol Technol, 2011,60:143-148.
doi: 10.1016/j.postharvbio.2010.12.014
[28] Ranftl Q L, Bastakis E, Klermund C, Schwechheimer C . LLM- domain containing B-GATA factors control different aspects of cytokinin-regulated development in Arabidopsis thaliana. Plant Physiol, 2016,170:2295-2311.
doi: 10.1104/pp.15.01556 pmid: 26829982
[29] Luo X M, Lin W H, Zhu S W, Zhu J Y, Sun Y, Fan X Y, Cheng M L, Hao Y Q, Oh E, Tian M M, Liu L J, Zhang M, Xie Q, Chong K, Wang Z Y . Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell, 2010,19:872-883.
doi: 10.1016/j.devcel.2010.10.023 pmid: 3022420
[30] Shin J M, Chung K M, Sakamoto S, Kojima S, Yeh C M, Ikeda M, Mitsuda N, Ohme-Takagi M . The chimeric repressor for the GATA4 transcription factor improves tolerance to nitrogen deficiency in Arabidopsis. Plant Biotechnol, 2017,34:151-158.
doi: 10.5511/plantbiotechnology.17.0727a
[31] Leene J V, Hollunder J, Eeckhout D, Persiau G, Slijke E V D, Stals H . Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Sys Biol, 2010,6:397.
[32] Sang E J, Yoko O, Jaesung N, Masaaki U, Gyung-Tae K . Kip-related protein 3 is required for control of endoreduplication in the shoot apical meristem and leaves of Arabidopsis. Mol Cells, 2013,35:47-53.
doi: 10.1007/s10059-013-2270-4 pmid: 23314608
[33] Cheng Y, Cao L, Wang S, Li Y P, Shi X Z . Downregulation of multiple CDK inhibitor ICK/KRP genes upregulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Arabidopsis. Plant J, 2013,75:642-655.
doi: 10.1111/tpj.12228 pmid: 23647236
[34] Constabel C P, Brisson N . The defense-related STH-2 gene product of potato shows race-specific accumulation after inoculation with low concentrations of Phytophthora infestans zoospores. Planta, 1992,188:289-295.
doi: 10.1007/BF00192794 pmid: 24178317
[35] Constabel C P, Bertrand C, Brisson N . Transgenic potato plants overexpressing the pathogenesis-related STH-2 gene show unaltered susceptibility to Phytophthora infestans and potato virus X. Plant Mol Biol, 1993,22:775-782.
doi: 10.1007/BF00027364 pmid: 8358029
[36] El-Banna A, Hajirezaei M R, Wissing J, Ali Z, Vaas L, Heine-Dobbernack E, Jacobsen H J, Schumacher H M, Kiesecker H . Over-expression of PR-10a leads to increased salt and osmotic tolerance in potato cell cultures. J Biotechnol, 2010,150:277-287.
doi: 10.1016/j.jbiotec.2010.09.934 pmid: 20854851
[37] Park S, Gupta R, Krishna R, Kim S T, Lee D Y, Hwang D J, Bae S C, Ahn I P . Proteome analysis of disease resistance against Ralstonia solanacearum in potato cultivar CT206-10. Plant Pathol J, 2016,32:25-32.
[1] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[4] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[5] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[6] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[7] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[8] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[9] WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248.
[10] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[11] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[12] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[13] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[14] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[15] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
Full text



No Suggested Reading articles found!