Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (1): 19-29.doi: 10.3724/SP.J.1006.2021.01050
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHEN Tong-Rui(), LUO Yan-Jun, ZHAO Pan-Ting, JIA Hai-Yan*(), MA Zheng-Qiang
[1] |
Chisholm S T, Coaker G, Day B, Staskawicz B J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006,124:803-814.
doi: 10.1016/j.cell.2006.02.008 pmid: 16497589 |
[2] |
Jones J D, Dangl J L. The plant immune system. Nature, 2006,444:323-329.
pmid: 17108957 |
[3] | 李圣军. 世界小麦产量格局及演变分析. 粮食问题研究, 2017, (6):9-15. |
Li S J. Analysis of world wheat production, marketing pattern and evolution. Grain Issues Res, 2017, (6):9-15 (in Chinese). | |
[4] |
Gilbert J, Tekauz A. Review: recent developments in research on fusarium head blight of wheat in Canada. Can J Plant Pathol, 2000,22:1-8.
doi: 10.1080/07060660009501155 |
[5] |
Goswami R S, Kistler H C. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol, 2010,5:515-525.
pmid: 20565626 |
[6] |
Song M, Xu W Q, Xiang Y, Jia H Y, Zhang L X, Ma Z Q. Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling. Plant Mol Biol, 2014,84:95-110.
doi: 10.1007/s11103-013-0121-5 |
[7] |
Jiang S Y, Ma Z, Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol, 2010,10:79.
doi: 10.1186/1471-2148-10-79 pmid: 20236552 |
[8] | Van Damme E J M, Lannoo N, Peumans W J. Plant lectins. Adv Bot Res, 2008,48:107-209. |
[9] | 徐文琦. 小麦JRL凝集素基因的表达及TaJRL2.1的功能分析. 南京农业大学博士学位论文, 江苏南京, 2014. |
Xu W Q. Expression and Function Analysis of TaJRL2.1 in Wheat. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract). | |
[10] |
Azarkan M, Feller G, Vandenameele J, Herman R, El Mahyaoui R, auvage E, Vanden Broeck A, Matagne A, Charlier P, Kerff F. Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem. Sci Rep, 2018,8:11508.
pmid: 30065388 |
[11] |
Raval S, Gowda S B, Singh D D, Chandra N R. A database analysis of jacalin-like lectins: sequence-structure-function relationships. Glycobiology, 2004,14:1247-1263.
doi: 10.1093/glycob/cwh140 pmid: 15329359 |
[12] |
Ma Q H. Monocot chimeric jacalins: a novel sub family of plant lectins. Crit Rev Biotechnol, 2014,34:300-306.
doi: 10.3109/07388551.2013.793650 pmid: 23886351 |
[13] |
Esch L, Schaffrath U. An update on jacalin-like lectins and their role in pant defense. Int J Mol Sci, 2017,18:1592-1602.
doi: 10.3390/ijms18071592 |
[14] |
Ye X Y, Ng T B, Tsang P W, Wang J. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J Protein Chem, 2001,20:367-375.
doi: 10.1023/a:1012276619686 pmid: 11732688 |
[15] |
Desclos-Theveniau M, Arnaud D, Huang T Y, Lin G J, Chen W Y, Lin Y C, Zimmerli L. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog, 2012,8:e1002513.
doi: 10.1371/journal.ppat.1002513 pmid: 22346749 |
[16] |
Singh P, Kuo Y C, Mishra S, Tsai C H, Chen C C, Chen C W, Desclos-Theveniau M, Chu P W, Schulze B, Chinchilla D, Boller T, Zimmerli L. The lectin receptor Kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell, 2012,24:1256-1270.
doi: 10.1105/tpc.112.095778 |
[17] |
Yamaji Y, Maejima K, Komatsu K, Shiraishi T, Okano Y, Himeno M, Sugawara K, Neriya Y, Minato N, Miura C, Hashimoto M, Namba S. Lectin-mediated resistance impairs plant virus infection at the cellular level. Plant Cell, 2012,24:778-793.
pmid: 22307853 |
[18] |
Sugawara K, Shiraishi T, Yoshida T, Fujita N, Netsu O, Yamaji Y, Namba S. A replicase of Potato Virus X acts as the resistance-breaking determinant for JAX1-mediated resistance. Mol Plant Microbe, 2013,26:1106-1129.
doi: 10.1094/MPMI-04-13-0094-R |
[19] |
Hwang I S, Hwang B K. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol, 2011,155:447-463.
pmid: 21205632 |
[20] | Miya A, Albert P, Shinya T, Desak Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA, 2007,104:19613-19618. |
[21] | Wan J, Zhang X C, Neece D, Ramonell K M, Clough S, Kim S Y, Stacey M G, Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 2008,20:471-481. |
[22] |
Chisholm S T, Mahajan S K, Whitham S A, Yamamoto M L, Carrington J C. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci USA, 2001,97:489-494.
pmid: 10618445 |
[23] |
Chisholm S T, Parra M A, Anderberg R J, Carrington J C. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol, 2001,127:1667-1675.
pmid: 11743111 |
[24] | Cosson P, Sofer L, Schurdi-Levraud V, Revers F. A member of a new plant gene family encoding a Meprin and TRAF homology (MATH) domain-containing protein is involved in restriction of long distance movement of plant viruses. Plant Signal Behave, 2010,5:1321-1323. |
[25] |
Nagano A J, Fukao Y, Fujiwara M, Nishimura M, Hara- Nishimura I. Antagonistic jacalin-related lectins regulate the size of ER body-type β-glucosidase complexes in Arabidopsis thaliana. Plant Cell Physiol, 2008,49:969-980.
pmid: 18467340 |
[26] |
Weidenbach D, Esch L, Möller C, Hensel G, Kumlehn J, Höfle C, Hückelhoven R, Schaffrath U. Polarized defense against fungal pathogens is mediated by the jacalin-related lectin domain of modular Poaceae-specific proteins. Mol Plant, 2016,9:514-527.
doi: 10.1016/j.molp.2015.12.009 pmid: 26708413 |
[27] |
Han Y, Song L, Peng C L, Liu X, Liu L H, Zhang Y H, Wang W Z, Zhou J, Wang S H, Ebbole D, Wang Z H, Lu G D. A Magnaporthe chitinase interacts with a rice jacalin-related lectin to promote host colonization. Plant Physiol, 2019,179:1416-1430.
doi: 10.1104/pp.18.01594 pmid: 30696749 |
[28] |
Xiang Y, Song M, Wei Z Y, Tong J H, Zhang L X, Xiao L T, Ma Z Q, Wang Y. A jacalin-related lectin-like gene in wheat is a component of the plant defence system. J Exp Bot, 2011,62:5471-5483.
doi: 10.1093/jxb/err226 pmid: 21862481 |
[29] |
Goriach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel K H, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 1996,8:629-643.
doi: 10.1105/tpc.8.4.629 pmid: 8624439 |
[30] |
Subramanyam S, Smith D F, Clemens J C, Webb M A, Sardesai N, Williams C E. Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by Hessian fly larvae. Plant Physiol, 2008,147:1412-1426.
doi: 10.1104/pp.108.116145 pmid: 18467454 |
[31] |
Ma Q H, Tian B, Li Y L. Overexpression of a wheat jasmonate-regulated lectin increases pathogen resistance. Biochimie, 2010,92:187-193.
doi: 10.1016/j.biochi.2009.11.008 pmid: 19958808 |
[32] |
Krattinger S G, Keller B. Molecular genetics and evolution of disease resistance in cereals. New Phytol, 2016,212:320-332.
pmid: 27427289 |
[33] | Han Y J, Zhong Z H, Song L L, Olsson Stefan, Wang Z H, Lu G D. Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae. J Integr Agric, 2018,17:60345-60347. |
[34] | 宋敏. 小麦JRL和DIR基因家族的鉴定和分析. 南京农业大学博士学位论文, 江苏南京, 2013. |
Song M. Identification and Analysis of JRL and DIR Gene Family. PhD Dissertation of Nanjing Agricultural University, Jiangsu, Nanjing, China, 2013. | |
[35] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001,25:402-408.
pmid: 11846609 |
[36] |
Ding L N, Xu H B, Yi H Y, Yang L M, Kong Z X, Zhang L X, Xue S L, Jia H Y, Ma Z Q. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One, 2011,6:e19008.
pmid: 21533105 |
[37] | Vasil I K, Vasil V. Transformation of wheat via particle bombardment. Meth Mol Biol, 2006,318:273-283. |
[38] | Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995,3:1137-1143. |
[39] |
Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, Ma S W, Kong Z X, Jia L, An X, Jiang G, Liu W X, Cao W J, Zhang R R, Fan J C, Xu X W, Liu Y F, Kong Q Q, Zheng S H, Wang Y, Qin B, Cao S Y, Ding Y X, Shi J X, Yan H S, Wang X, Ran C F, Ma Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019,51:1106-1112.
doi: 10.1038/s41588-019-0426-7 pmid: 31182810 |
[40] | Abebe T, Skadsen R W, Kaeppler H F. A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. Planta, 2005,21:170-183. |
[41] |
Jia F, Rock C D. Jacalin lectin At5g28520 is regulated by ABA and miR846. Plant Signal Behav, 2013,8:e24563.
doi: 10.4161/psb.24563 pmid: 23603955 |
[42] |
Xing L J, Li J, Xu Y Y, Xu Z H, Chong K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular modlity. PLoS One, 2009,4:e4854.
doi: 10.1371/journal.pone.0004854 pmid: 19287503 |
[43] |
He X, Li L, Xu H, Xi J, Cao X, Xu H, Rong S, Dong Y, Wang C, Chen R, Xu J, Gao X, Xu Z. A rice jacalin-related mannose- binding lectin gene, OsJRL, enhances Escherichia coli viability under high salinity stress and improves salinity tolerance of rice. Plant Biol (Stuttg), 2017,19:257-267.
pmid: 27718311 |
[44] |
Zhang H L, Deng C, Yao J, Zhang Y L, Zhang Y N, Deng S R, Zhao N, Sa G, Zhou X Y, Lu C F, Lin S Z, Zhao R, Chen S L. Populus euphratica JRL mediates ABA response, ionic and ROS homeostasis in Arabidopsis under salt stress. Int J Mol Sci, 2019,20:815.
doi: 10.3390/ijms20040815 |
[45] |
Weidenbach D, Esch L, Möller C, Hensel G, Kumlehn J, Höfle C, Hückelhoven R, Schaffrath U. Polarized defense against fungal pathogens is mediated by the jacalin-related lectin domain of modular Poaceae-specific proteins. Mol Plant, 2016,9:514-527.
doi: 10.1016/j.molp.2015.12.009 pmid: 26708413 |
[46] |
Beckers G J M, Spoel S H. Fine-tuning plant defense signaling: salicylate versus jasmonate. Plant Biol, 2006,8:1-10.
doi: 10.1055/s-2005-872705 pmid: 16435264 |
[47] |
Glazebrook J, Chen W, Estes B, Chang H S, Nawrath C, Metraux J P, Zhu T, Katagiri F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J, 2003, 34:217-228.
doi: 10.1046/j.1365-313x.2003.01717.x pmid: 12694596 |
[48] |
Khaledi N, Taheri P, Falahati-Rastegar M. Reactive oxygen species and antioxidant system responses in wheat cultivars during interaction with Fusarium species. Australas Plant Pathol, 2016,45:653-670.
doi: 10.1007/s13313-016-0455-y |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[3] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[4] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[5] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[6] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[7] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[8] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
[9] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[10] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[11] | XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477. |
[12] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[13] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
[14] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[15] | JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98. |
|