Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3364-3376.doi: 10.3724/SP.J.1006.2023.33001

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Comparing different machine learning methods for maize leaf area index (LAI) prediction using multispectral image from unmanned aerial vehicle (UAV)

MA Jun-Wei1,2(), CHEN Peng-Fei2,4,*(), SUN Yi3, GU Jian3, WANG Li-Juan1,*()   

  1. 1School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
    2State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
    4Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, Jiangsu, China
  • Received:2023-01-01 Accepted:2023-04-17 Online:2023-12-12 Published:2023-05-05
  • Contact: * E-mail: pengfeichen@igsnrr.ac.cn; E-mail: wanglj2013@jsnu.edu.cn
  • Supported by:
    Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28040502);National Natural Science Foundation of China(41871344);Jiangsu Normal University Graduate Research Innovation Program Project(2022XKT0070)

Abstract:

To make an accurate estimation of leaf are index (LAI) based on machine learning methods and images from UAV, we compared the several mainstream machine learning methods for maize LAI prediction, such as Artificial Neural Network method (ANN), Gaussian Process Regression method (GPR), Support Vector Regression method (SVR), and Gradient Boosting Decision Tree (GBDT). For this purpose, field experiments that considering apply of different amount of organic fertilizer, different amount of inorganic fertilizer, different amount of crop residue, and different planting density were carried out. Based on these experiments, field campaign were conducted to obtain UAV multispectral images and LAI data at different growth stages in maize. Based on above data, firstly, correlation analysis was used to select LAI-sensitive spectral indices, and then the Partial Least Squares Regression method (PLSR) and ANN, GPR, SVR, GBDT were coupled to design the LAI prediction models, respectively, and their performance for LAI prediction were compared. The results showed that the LAI prediction model constructed by PLSR+GBDT method had the highest accuracy and the best stability. The models of R2 and RMSE values were 0.90 and 0.25, and the verified R2 and RMSE values were 0.90 and 0.29 during validation, respectively. The model based on PLSR+GPR model was followed, with R2 and RMSE values of 0.86 and 0.30 during calibration, and R2 and RMSE values of 0.89 and 0.29 during validation, respectively. Besides, it had faster training speed and could give the uncertainty of the prediction. The model designed by PLSR+ANN method had R2 and RMSE values of 0.85 and 0.31 during calibration, and R2 and RMSE values of 0.89 and 0.30 during validation, respectively. The model designed by PLSR+SVR method had R2 and RMSE values of 0.86 and 0.32, and R2 and RMSE values of 0.90 and 0.33, respectively. Therefore, PLSR+GBDT method and PLSR+GPR method are recommended as the optimal methods for designing maize LAI prediction models.

Key words: LAI, machine learning, UAV, multispectral image, maize

Fig. 1

Location of the study area and distribution of field plots N1: 150 kg hm-2, N2: 180 kg hm-2, N3: 210 kg hm-2, N4: 240 kg hm-2; P1: 60 kg hm-2, P2: 75 kg hm-2, P3: 90 kg hm-2; K1: 75 kg hm-2, K2: 90 kg hm-2, K3: 105 kg hm-2; O1: 0 kg hm-2, O2: 22,500 kg hm-2, O3: 37,500 kg hm-2, O4: 45,000 kg hm-2, O5: 52,500 kg hm-2; D1: 50,000 plant hm-2, D2: 55,000 plant hm-2, D3: 60,000 plant hm-2, D4: 62,000 plant hm-2, D5: 64,000 plant hm-2; R1: 0 kg hm-2, R2: 3000 kg hm-2, R3: 4500 kg hm-2, R4: 6000 kg hm-2, R5: 7500 kg hm-2; T0: 0 kg hm-2, T1: 750 kg hm-2."

Table 1

Information of visible to near-infrared bands for Altum multispectral camera (nm)"

波段名称
Band name
中心波长
Central wavelength
波宽
Bandwidth
蓝光波段Blue band 475 20
绿光波段Green band 560 20
红光波段Red band 668 10
红边波段Red-edge band 717 10
近红外波段Near infrared band 840 40

Table 2

Spectral indices selected in this study"

缩写
Abbreviation
全称
Full name
公式
Formula
来源
Source
NDVI 归一化植被指数
Normalized Difference Vegetation Index
$\left( \text{NIR}-\text{R} \right)/\left( \text{NIR}+\text{R} \right)$ [22]
RVI 比值植被指数
Ratio Vegetation Index
$\text{NIR}/\text{R}$ [23]
DVI 差值植被指数
Difference Environmental Vegetation Index
$\text{NIR}-\text{R}$ [24]
EVI 增强植被指数
Enhanced Vegetation Index
$2.5\left( \text{NIR}-\text{R} \right)/\left( \text{NIR}+6\text{R}-\text{7}\text{.5B}+\text{1} \right)$ [25]
GNDVI 绿色归一化植被指数
Green Normalized Difference Vegetation Index
$\left( \text{NIR}-\text{G} \right)/\left( \text{NIR}+\text{G} \right)$ [26]
MSAVI 调整型土壤调节植被指数
Modified Soil Adjusted Vegetation Index
$\left( \text{2NIR}+1-\text{sqrt}\left( {{\left( 2\text{NIR+1} \right)}^{2}}-\text{8}\left( \text{NIR}-\text{R} \right) \right) \right)/\text{2}$ [27]
OSAVI 优化型土壤调节植被指数
Optimized Soil Adjusted Vegetation Index
$\text{1}\text{.16}\left( \text{NIR}-\text{R} \right)/\left( \text{NIR}+\text{R}+\text{0}\text{.16} \right)$ [28]
TVI 三角形植被指数
Triangular Vegetation Index
$\text{60}\left( \text{NIR}-\text{G} \right)-\text{100}\left( \text{R}-\text{G} \right)$ [29]
GRVI 绿色比值植被指数
Green Ratio Vegetation Index
$\text{NIR}/\text{G}-\text{1}$ [30]
SAVI 土壤调节植被指数
Soil Adjusted Vegetation Index
$\text{1}\text{.5}\left( \text{NIR}-\text{R} \right)/\left( \text{NIR}+\text{R}+\text{0}\text{.5} \right)$ [31]
RENDVI 红边归一化差值植被指数
Red Edge Normalized Difference Vegetation Index
$\left( \text{RE}-\text{R} \right)/\left( \text{RE}+\text{R} \right)$ [32]
RESR 红边比值植被指数
Red-Edge Simple Ratio
RE/R [33]
MCARI 改进叶绿素吸收指数
Modified Chlorophyll Absorption Ratio Index
$\left( \left( \text{RE}-\text{R} \right)-0.2\left( \text{RE}-\text{G} \right) \right)\left( \text{RE}/\text{R} \right)$ [34]
TCARI 转换叶绿素吸收指数
Transformed Chlorophyll Absorption in Reflectance Index
$3\left( \left( \text{RE}-\text{R} \right)-0.2\left( \text{RE}-\text{G} \right)\left( \text{RE}/\text{R} \right) \right)$ [35]
TCARI/OSAVI 组合植被指数
Combined Spectral Index
TCARI/OSAVI [36]
VARI 抗大气指数
Visible Atmospherically Resistant Index
$\left( \text{G}-\text{R} \right)/\left( \text{G}+\text{R}-\text{B} \right)$ [37]
RDVI 重归一化植被指数
Re-normalized Difference Vegetation Index
$\left( \text{NIR}-\text{R} \right)/\text{sqrt}\left( \text{NIR}+\text{R} \right)$ [38]
MSR 改进比值植被指数
Modified Simple Ratio
$\left( \text{NIR/R}-1 \right)/\text{sqrt}\left( \text{NIR/R}+1 \right)$ [39]
NGI 归一化绿色指数
Normalized Green Index
$G/\left( \text{NIR}+\text{G}+\text{RE} \right)$ [40]
NDRE 归一化差值红边指数
Normalized Difference Red Edge Index
$\left( \text{NIR}-\text{RE} \right)/\left( \text{NIR}+\text{RE} \right)$ [41]

Fig. 2

Flow chart of LAI prediction model designed by different methods"

Table 3

LAI statistics in maize"

生育期
Growth stage
样本数
Number of samples
最小值
Min. value
最大值
Max. value
平均值
Average value
标准差
Standard deviation
方差
Variance
变异系数
Coefficient of variation (%)
四叶期V4 stage 70 0.37 2.20 0.83 0.34 0.11 40.96
九叶期V9 stage 70 1.61 3.19 2.31 0.34 0.12 14.72

Table 4

Correlation analysis between each spectral index and LAI in maize (n = 140)"

光谱指数
Spectral index
相关系数
Correlation coefficient
光谱指数
Spectral index
相关系数
Correlation coefficient
NDVI 0.84** RENDVI 0.81**
RVI 0.85** RESR 0.80**
DVI 0.89** MCARI 0.79**
EVI 0.88** TCARI 0.67**
GNDVI 0.88** TCARI/OSAVI -0.78**
MSAVI 0.88** VARI 0.82**
OSAVI 0.87** RDVI 0.88**
TVI 0.88** MSR 0.86**
GRVI 0.89** NGI -0.88**
SAVI 0.88** NDRE 0.90**

Fig. 3

Cross validation of the PLSR+ANN model"

Fig. 4

Maize LAI prediction model designed by PLSR+ANN (a): calibration; (b): validation."

Fig. 5

Cross validation of the PLSR+GPR model"

Fig. 6

Maize LAI prediction model designed by PLSR+GPR (a): calibration; (b): validation."

Fig. 7

Cross validation of the PLSR+SVR model"

Fig. 8

Maize LAI prediction model designed by PLSR+SVR (a): calibration; (b): validation."

Fig. 9

Cross validation of the PLSR+GBDT model"

Fig. 10

Maize LAI prediction model designed by PLSR+GBDT (a): calibration; (b): validation."

Table 5

Summary of maize LAI prediction results for different methods"

模型
Models
建模Calibration 验证Validation
Rcal2 RMSEcal Rval2 RMSEval
PLSR+ANN 0.85 0.31 0.89 0.30
PLSR+GPR 0.86 0.30 0.89 0.29
PLSR+SVR 0.86 0.32 0.90 0.33
PLSR+GBDT 0.90 0.25 0.90 0.29
[1] 夏天, 吴文斌, 周清波, 周勇, 于雷. 基于高光谱的冬小麦叶面积指数估算方法. 中国农业科学, 2012, 45: 2085-2092.
doi: 10.3864/j.issn.0578-1752.2012.10.022
Xia T, Wu W B, Zhou Q B, Zhou Y, Yu L. An estimation method of winter wheat leaf area index based on hyperspectral data. Sci Agric Sin, 2012, 45: 2085-2092. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2012.10.022
[2] Inoue Y. Synergy of remote sensing and modeling for estimating ecophysiological processes in plant production. Plant Prod Sci, 2003, 6: 3-16.
doi: 10.1626/pps.6.3
[3] 李俐, 许连香, 王鹏新, 齐璇, 王蕾. 基于叶面积指数的河北中部平原夏玉米单产预测研究. 农业机械学报, 2020, 51(6): 198-208.
Li L, Xu L X, Wang P X, Qi X, Wang L. Summer maize yield forecasting based on leaf area index. Trans CSAM, 2020, 51(6): 198-208. (in Chinese with English abstract)
[4] 苏伟, 侯宁, 李琪, 张明政, 赵晓凤, 蒋坤萍. 基于Sentinel-2遥感影像的玉米冠层叶面积指数反演. 农业机械学报, 2018, 49(1): 151-156.
Su W, Hou N, Li Q, Zhang M Z, Zhao X F, Jiang K P. Retrieving leaf area index of corn canopy based on Sentinel-2 remote sensing image. Trans CSAM, 2018, 49(1): 151-156. (in Chinese with English abstract)
[5] 张春兰, 杨贵军, 李贺丽, 汤伏全, 刘畅, 张丽研. 基于随机森林算法的冬小麦叶面积指数遥感反演研究. 中国农业科学, 2018, 51: 855-867.
doi: 10.3864/j.issn.0578-1752.2018.05.005
Zhang C L, Yang G J, Li H L, Tang F Q, Liu C, Zhang L Y. Remote sensing inversion of leaf area index of winter wheat based on random forest algorithm. Sci Agric Sin, 2018, 51: 855-867. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.05.005
[6] 任建强, 吴尚蓉, 刘斌, 陈仲新, 刘杏认, 李贺. 基于Hyperion高光谱影像的冬小麦地上干生物量反演. 农业机械学报, 2018, 49(4): 199-211.
Ren J Q, Wu S R, Liu B, Chen Z X, Liu X R, Li H. Retrieving winter wheat above-ground dry biomass based on hyperion hyperspectral imagery. Trans CSAM, 2018, 49(4): 199-211. (in Chinese with English abstract)
[7] 王利民, 刘佳, 杨玲波, 陈仲新, 王小龙, 欧阳斌. 基于无人机影像的农情遥感监测应用. 农业工程学报, 2013, 29(18): 136-145.
Wang L M, Liu J, Yang L B, Chen Z X, Wang X L, Ou-Yang B. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring. Trans CSAE, 2013, 29(18): 136-145. (in Chinese with English abstract)
[8] Yue J B, Feng H K, Yang G J, Li Z H. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens, 2018, 10: 66.
doi: 10.3390/rs10010066
[9] Fu Y Y, Yang G J, Li Z H, Song X Y, Li Z H, Xu X G, Wang P, Zhao C J. Winter wheat nitrogen status estimation using UAV-based RGB imagery and gaussian processes regression. Remote Sens, 2020, 12: 3778.
doi: 10.3390/rs12223778
[10] Liu K, Zhou Q B, Wu W B, Xia T, Tang H J. Estimating the crop leaf area index using hyperspectral remote sensing. J Integr Agric, 2016, 15: 475-491.
doi: 10.1016/S2095-3119(15)61073-5
[11] Shi Y, Wang J, Wang J, Qu Y H. A prior knowledge-based method to derivate high-resolution leaf area index maps with limited field measurements. Remote Sens, 2016, 9: 13.
doi: 10.3390/rs9010013
[12] 陈鹏飞, 孙九林, 王纪华, 赵春江. 基于遥感的作物氮素营养诊断技术: 现状与趋势. 中国科学: 信息科学, 2010, 40(增刊1): 21-37.
Chen P F, Sun J L, Wang J H, Zhao C J. Using remote sensing technology for crop nitrogen diagnosis: status and trends. Sci China (Infor Sci), 2010, 40(S1): 21-37. (in Chinese with English abstract)
[13] Durbha S S, King R L, Younan N H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens Environ, 2007, 107: 348-361.
doi: 10.1016/j.rse.2006.09.031
[14] Liu S B, Jin X L, Bai Y, Wu W B, Cui N B, Cheng M H, Liu Y D, Meng L, Jia X, Nie C W, Yin D M. UAV multispectral images for accurate estimation of the maize LAI considering the effect of soil background. Int J Appl Earth Obs Geoinf, 2023, 121: 103383.
[15] Yuan H H, Yang G J, Li C C, Wang Y J, Liu J G, Yu, H Y, Feng H K, Xu B, Zhao X Q, Yang X D. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: analysis of RF, ANN, and SVM regression models. Remote Sens, 2017, 9: 309.
doi: 10.3390/rs9040309
[16] Shi Y, Gao Y, Wang Y, Luo D N, Chen S Z, Ding Z T, Fan K. Using unmanned aerial vehicle-based multispectral image data to monitor the growth of intercropping crops in tea plantation. Front Plant Sci, 2022, 13: 820585.
doi: 10.3389/fpls.2022.820585
[17] Zhang Y, Yang J, Liu X, Du L, Shi S, Sun J, Chen B W. Estimation of multi-species leaf area index based on Chinese GF-1 satellite data using look-up table and gaussian process regression methods. Sensors, 2020, 20: 2460.
doi: 10.3390/s20092460
[18] Berger K, Verrelst J, Féret J B, Wang Z H, Wocher M, Strathmann M, Danner M, Mauser W, Hank T. Crop nitrogen monitoring: recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens Environ, 2020, 242: 111758.
doi: 10.1016/j.rse.2020.111758
[19] Das B, Manohara K K, Mahajan G R, Sahoo R N. Spectroscopy based novel spectral indices, PCA- and PLSR-coupled machine learning models for salinity stress phenotyping of rice. Spectroch Acta A Mol Biomol Spectr, 2020, 229: 117983.
doi: 10.1016/j.saa.2019.117983
[20] Mahajan G R, Das B, Murgaokar D, Herrmann I, Berger K, Sahoo R N, Patel K, Desai A, Morajkar S, Kulkarni R M. Monitoring the foliar nutrients status of mango using spectroscopy-based spectral indices and PLSR-combined machine learning models. Remote Sens, 2021, 13: 641.
doi: 10.3390/rs13040641
[21] Xie Q, Huang W, Zhang B, Chen P F, Song X Y, Pascucci S, Pignatti S, Laneve G, Dong Y Y. Estimating winter wheat leaf area index from ground and hyperspectral observations using vegetation indices. IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 9: 771-780.
doi: 10.1109/JSTARS.4609443
[22] Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance 1. An invertedGaussian reflectance model. Int J Remote Sens, 1990, 11: 1755-1773.
doi: 10.1080/01431169008955128
[23] Schuerger A C, Capelle G A, Di Benedetto J A, Mao C Y, Thai C N, Evans M D, Richards J T, Blank T A, Stryjewski E C. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in Bahia grass (Paspalum notatum Flugge.). Remote Sens Environ, 2003, 84: 572-588.
doi: 10.1016/S0034-4257(02)00181-5
[24] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogr Eng Remote Sens, 1977, 43: 1541-1552.
[25] Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 2002, 83: 195-213.
doi: 10.1016/S0034-4257(02)00096-2
[26] Huete A, Justice C, Liu H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ, 1994, 49: 224-234.
doi: 10.1016/0034-4257(94)90018-3
[27] Qi J, Chehbouni A, Huete A R, Keer Y H, Sorooshian S. A modified soil adjusted vegetation index. Remote Sens Environ, 1994, 48: 119-126.
doi: 10.1016/0034-4257(94)90134-1
[28] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ, 1996, 55: 95-107.
doi: 10.1016/0034-4257(95)00186-7
[29] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ, 2001, 76: 156-172.
doi: 10.1016/S0034-4257(00)00197-8
[30] Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens Environ, 1996, 58: 289-298.
doi: 10.1016/S0034-4257(96)00072-7
[31] Huete A R. A soil vegetation adjusted index (SAVI). Remote Sens Environ, 1988, 25: 295-309.
doi: 10.1016/0034-4257(88)90106-X
[32] Van Beek J, Tits L, Somers B, Coppin P. Stem water potential monitoring in pear orchards through WorldView-2 multispectral imagery. Remote Sens, 2013, 5: 6647-6666.
doi: 10.3390/rs5126647
[33] Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res, 2011, 124: 74-84.
doi: 10.1016/j.fcr.2011.06.007
[34] Daughtry C, Walthall C L, Kim M S, de Colstoun E B, McMurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ, 2000, 74: 229-239.
doi: 10.1016/S0034-4257(00)00113-9
[35] Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ, 2002, 81: 416-426.
doi: 10.1016/S0034-4257(02)00018-4
[36] Haboudane D, Tremblay N, Miller J R, Vigneault P. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans Geosci Remote Sens, 2008, 46: 423-437.
doi: 10.1109/TGRS.2007.904836
[37] Han L, Yang G J, Dai H Y, Xu B, Yang H, Feng H K, Li Z H, Yang X D. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 2019, 15: 10.
doi: 10.1186/s13007-019-0394-z pmid: 30740136
[38] Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Envrion, 1995, 51: 375-384.
[39] Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens, 1996, 22: 229-242.
doi: 10.1080/07038992.1996.10855178
[40] Sripada R P, Heiniger R W, White J G, Meijer A D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron J, 2006, 98: 968-977.
doi: 10.2134/agronj2005.0200
[41] Thompson C N, Mills C, Pabuayon I L B, Ritchie G L. Time-based remote sensing yield estimates of cotton in water- limiting environments. Agron J, 2020, 112: 975-984.
doi: 10.1002/agj2.v112.2
[42] Chen P F, Wang J H, Huang W J, Tremblay N, Ou-Yang Z, Zhang Q. Critical nitrogen curve and remote detection of nitrogen nutrition index for corn in the northwestern plain of shandong province, China. IEEE J Sel Top Appl Earth Observ Remote Sens, 2013, 6: 682-689.
doi: 10.1109/JSTARS.4609443
[43] Farifteh J, Van der Meer F D, Atzberger C, Carranza E J M. Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Envrion, 2007, 110: 59-78.
[44] Rasumssen C E, Williams C K I. Gaussian Process for Machine Learning. New York: The MIT Press, 2006. p 7.
[45] Valdimirn. The Nature of Statistical Learning Theory. New York: Springer, 2000. pp 267-290.
[46] Friedman J. Greedy function approximation: a gradient boosting machine. Ann Stat, 2001, 29: 1189-1232.
doi: 10.1214/aos/1013203450
[47] Wu T A, Zhang W, Wu S Y, Cheng M H, Qi L S, Shao G C, Jiao X Y. Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods. Front Plant Sci, 2023, 13: 1088499.
doi: 10.3389/fpls.2022.1088499
[48] Liu Z J, Guo P J, Liu H, Fan P, Zeng P Z, Liu X Y, Feng C, Wang W, Yang F Z. Gradient boosting estimation of the leaf area index of apple orchards in UAV remote sensing. Remote Sens, 2021, 13: 3263.
doi: 10.3390/rs13163263
[49] Sun X K, Yang Z Y, Su P Y, Wei K X, Wang Z G, Yang C B, Wang C, Qin M X, Xiao L J, Yang W D, Zhang M J, Song X Y, Feng M C. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features. Front Plant Sci, 2023, 14: 1158837.
doi: 10.3389/fpls.2023.1158837
[50] 马怡茹, 吕新, 易翔, 马露露, 祁亚琴, 侯彤瑜, 张泽. 基于机器学习的棉花叶面积指数监测. 农业工程学报, 2021, 37(13): 152-162.
Ma Y R, Lyu X, Yi X, Ma L L, Qi Y Q, Hou T Y, Zhang Z. Monitoring of cotton leaf area index using machine learning. Trans CSAE, 2021, 37(13): 152-162. (in Chinese with English abstract)
[51] Zhang Z D, Jung C. GBDT-MO: gradient-boosted decision trees for multiple outputs. IEEE Trans Neural Netw Learn Syst, 2021, 32: 3156-3167.
doi: 10.1109/TNNLS.2020.3009776
[52] 王丽爱, 马昌, 周旭东, 訾妍, 朱新开, 郭文善. 基于随机森林回归算法的小麦叶片SPAD值遥感估算. 农业机械学报, 2015, 46(1): 259-265.
Wang L A, Ma C, Zhou X D, Zi Y, Zhu X K, Guo W S. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data. Trans CSAM, 2015, 46(1): 259-265. (in Chinese with English abstract)
[1] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[2] YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99.
[3] SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186.
[4] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[5] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang . Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[6] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[7] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[8] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[9] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
[10] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[11] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[12] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[13] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[14] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[15] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .