Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1181-1192.doi: 10.3724/SP.J.1006.2024.34153

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Core germplasm and DNA molecular identity card of proso millet in Northeast Spring sowing region in China

DING Yi-Bing1,2(), XIN Xu-Xia2, FENG Zhi-Zun2, CAO Yue2, GUO Juan2, Dipak K SANTRA3, WANG Rui-Yun2,*(), CHEN Xi-Ming1,4,*()   

  1. 1Corn Research Institute, Shanxi Agricultural University, Xinzhou 034000, Shanxi, China
    2College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    3Panhandle Research and Extension Center, Department of Agronomy and Horticulture, University of Nebraska- Lincoln, Scottsbluff 69361, Nebraska, USA
    4Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan 030000, Shanxi, China
  • Received:2023-09-12 Accepted:2024-01-12 Online:2024-05-12 Published:2024-01-31
  • Contact: E-mail: 516834898@qq.com; E-mail: wry925@126.com
  • Supported by:
    National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding(202204010910001);National Natural Science Foundation of China(31271791);China Agriculture Research System of MOF and MARA(CARS-06-14.5-A16);Special Fund for Construction of Modern Agricultural Industrial Technology System of Shanxi Province(2023CYJSTX03-12);Key Research & Development Project of Shanxi Province(2022ZDYF110);Shanxi Key Laboratory of Innovation and Molecular Breeding, Shanxi Agricultural University(K462202040);Biological Breeding Project of Shanxi Agricultural University(YZGC069);Graduate Education Reform Project of Agronomy College in Shanxi Agricultural University(2023YJG05);Shanxi Province Scientific and Technological Achievements Transformation and Guidance Project(201904D131056)

Abstract:

In this study, 500 proso millet resources in Northeast Spring Sowing Region were used as the experimental materials, 169 SSR markers, UPGMA clustering, and stratified sampling were used to construct core germplasm, and ID Analysis 4.0 software was used to construct molecular identity card. The genetic diversity of the core collection was evaluated by genetic diversity metrics such as allele number (Na), and the core collection was analyzed by PCOA. The results showed that 169 pairs of SSR primers were screened, and 30 pairs of SSR primers were found to have good polymorphism. The core collection of proso millet constructed by 30 pairs of SSR primers contained 190 materials, accounting for 38% of all germplasm. Ninety-one alleles were detected in all germplasm and core collection, and 100% alleles were retained. The number of effective alleles was 2.2977-2.9975 and 2.2872-3.0173, with an average of 2.8198 and 2.8297, respectively. The Shannon diversity index was 0.9532-1.0990 and 0.9535-1.1162, with an average of 1.0645 and 1.0667. The observed heterozygosity was 0.3434-0.8037 and 0.3162-0.7849, with an average of 0.5399 and 0.5359. The expected heterozygosity was 0.5654-0.6672 and 0.5645-0.6707, with an average of 0.6448 and 0.6473. Nei’s gene diversity index was 0.5648-0.6664 and 0.5628-0.6686, with an average of 0.6441 and 0.6452. The polymorphism information content was 0.6657-0.8356 and 0.6493-0.8340, with an average of 0.7974 and 0.7944. The results of t-test showed that there was no significant difference in the related indexes of molecular markers between all germplasm and core germplasm, and PCOA analysis showed that the core germplasm and all germplasm had similar genetic diversity and population structure. At the same time, 8 SSR markers (RYW5, RYW8, RYW16, RYW28, RYW40, RYW53, RYW62, and RYW67) were found to distinguish 190 core germplasms, and the molecular identity card of the core germplasms of Northeast proso millet was constructed, which providing a scientific basis for the efficient utilization and rapid traceability of proso millet germplasm.

Key words: Panicum miliaceum, the Northeast Spring sowing region, SSR, core collection, DNA molecular ID card

Table 1

Screening the primers of 12 accessions"

材料编号
Serial
number
统一编号
Unicode
名称
Name
来源
Source
备注
Remark
1 00000018 黑糜子 Heimeizi 黑龙江克山 Keshan, Heilongjiang 地方品种
Landrace
2 00000173 黄糜子 Huangmeizi 黑龙江穆棱 Muling, Heilongjiang
3 00000081 黄糜子 Huangmeizi 黑龙江富锦 Fujin, Heilongjiang
4 00000001 64黍120 64 Shu 120 黑龙江嫩江 Nenjiang, Heilongjiang
5 00000501 通辽高粱黍Tongliaogaoliangshu 内蒙古通辽 Tongliao, Inner Mongolia
6 00000413 昌图红糜子Changtuhongmeizi 辽宁昌图 Changtu, Liaoning
7 00000452 海城紧穗 Haichengjinsui 辽宁海城 Haicheng, Liaoning
8 00000423 黑山红黍 Heishanhongshu 辽宁黑山 Heishan, Liaoning
9 00000401 红糜子 Hongmeizi 吉林通化 Tonghua, Jilin
10 00000331 红糜子 Hongmeizi 吉林白城 Baicheng, Jilin
11 00000386 糜子 Meizi 吉林安图 Antu, Jilin
12 00006562 燕头黑黍 Yantouheishu 吉林吉林 Jilin, Jilin

Table 2

30 SSR primer pairs for construction of the core germplasm"

引物
Primer name
正向引物序列
Forward sequence (5′-3′)
反向引物序列
Reverse sequence (5′-3′)
退火温度 Tm (℃) 重复碱基
Repeat motif
RYW2 TTAGGGCTCTCCTGCATCC CAGCGAGTTCACCGTCAAG 56.8 (CGAAGC)5
RYW3 GGAGGCGTGACAATAAAAC GGCGTGAGGTGTTGTTTTT 52.5 (CTGCAA)5
RYW5 GACGATGCTCTTGACCTTGT CACCGTGAAATGTCTCTGCT 55.0 (CCTTT)5
RYW6 AGCCGATTTGCTGTGGAGT CTGCCTCCGATGAGTTGGT 57.4 (ACACC)5
RYW8 GGGTCAGAGAATACACAGCG GTAGGGAAGGAGAAGTGGGT 55.9 (AATAG)5
RYW12 ACCATCCCAGCACAAACCA TGCCTGAAGGAGAAGAGCG 57.5 (AGCT)5
RYW16 ATCTCCTCCGCCTTCTAACCC TGGCAATGGTCGTACAAACT 56.7 (GAGC)5
RYW17 TCAGCTACTTCGAACGGC GGATCATGCGATACATTTGG 53.0 (TTTC)5
RYW20 ACCTCTTGCCGCACACTAC TTCTACATCCCCGAACCAC 56.2 (TTGG)6
RYW28 CCAAGGCTGAGCAGAAAGAT ACAAGGTGAAACCCGAAGC 55.4 (AGGC)5
RYW29 CTTGATTTCTCACGCACCG TGTCCAGCAGTAGTCGTTCCT 56.2 (GCAG)5
RYW30 TAGCCTTCTTTGCCACCACT GCCCGTGATGATATTCGAC 54.9 (TTTC)5
RYW40 TGCTCTTCGGCTCTTCTCC ATCAGCTCATCGTGACCCC 57.4 (CAGC)6
RYW42 AGACACCCTGGGCAACATC CTGGACTGGGCTTCGTTCT 57.8 (GGCT)5
RYW43 GGAGATGCTTGCTTGGTTG CAGGAATCGCAAGGAACAG 54.0 (GGAG)5
RYW47 TTGTTTTTGCTGCTGCCTC TGCTGGACTTCTTTTTGCC 53.7 (GCCT)5
RYW50 CAAGGCAGATAGGGCAAGT TCGTCTGCTGCTGGTTTGT 56.1 (GGAG)5
RYW52 AGTAGTCCTCCACCGCCAT CTCTTCCTCGTTCTCGGCT 57.8 (TACC)5
RYW53 ATGCCTCCGATGTAGATGC GCCGCCTTCTCTTCATTCT 54.9 (GAGG)5
RYW55 CTGGTGGTGGTAGTTAGCG TTATGCCACCCACCGTAGC 56.9 (TAGC)5
RYW62 GTTTAGAGAGCAGGAGGCG AGCCCTGTCCACCCTAATC 56.4 (GCTC)5
RYW67 GAAGGAAACGCACCAGAGT TTGGGTTTGTGCTTGGAGT 54.9 (TGCG)5
RYW99 CGGAGTTCTTGGTGGCTT GCGTTCGCCAAAGAGCAT 56.1 (CCA)5
RYW125 TTGACGACGACTGTGTGC TGTTGGTGGAGTTGAGGAC 55.1 (GGC)5
RYW145 CTTTTTCTGCTGCTCCCT TGATGCCATACCCAACTG 52.2 (GAC)6
RYW146 TGATGCTTCTTGGGTTCG CGCCGTCCACTTCTGTAT 53.6 (GCG)6
RYW149 CAGGACTTGGGTGATTGC GAGCGGAGGAGGAAACTA 53.7 (AGC)7
RYW156 TTTACAACCCTTCCCGCC AGGACTTTCCGCCTCTACCC 57.5 (CCG)5
RYW158 GGTAGGGTTCAAGGTGGTT CAGGCAATCTCTTCAGGC 54.0 (CCG)5
RYW164 AGACAGCCATTCAACCACG CCATCTCCTCATCCACCA 54.6 (GA)6

Fig. 1

Polypropylene gel electrophoresis diagram of the amplified parts of the RYW40 primer pair material 1-20 are Heilongjiang materials; 21-35 are Jilin materials; 36-45 are Liaoning materials; 46-50 are Inner Mongolia materials."

Fig. 2

Cluster analysis plots of four proso millet germplasm populations based on 30 pairs of SSR data HLJ: Heilongjiang; JL: Jilin; LN: Liaoning; IM: Inner Mongolia."

Table 3

Comparison of genetic parameters between germplasm resources and core collections"

位点
Locus
Na Ne I Ho He Nei PIC
CC EC CC EC CC EC CC EC CC EC CC EC CC EC
RYW2 3 3 2.8424 2.7698 1.0695 1.0561 0.4785 0.5023 0.6502 0.6397 0.6482 0.6390 0.8241 0.8202
RYW3 3 3 2.8456 2.8320 1.0705 1.0692 0.6785 0.7271 0.6506 0.6476 0.6486 0.6469 0.7663 0.7438
RYW5 3 3 2.9708 2.9804 1.0936 1.0953 0.3162 0.3434 0.6658 0.6655 0.6634 0.6645 0.7867 0.7830
RYW6 3 3 2.9285 2.9128 1.0864 1.0841 0.3791 0.3652 0.6607 0.6575 0.6585 0.6567 0.8213 0.8154
RYW8 3 3 2.7788 2.7895 1.0552 1.0576 0.4938 0.4635 0.6421 0.6423 0.6401 0.6415 0.7989 0.8133
RYW12 3 3 2.8112 2.7954 1.0654 1.0631 0.5875 0.5704 0.6463 0.6430 0.6443 0.6423 0.8100 0.8093
RYW16 3 3 2.7053 2.7785 1.0443 1.0562 0.3664 0.3610 0.6328 0.6410 0.6304 0.6401 0.7701 0.7703
RYW17 3 3 2.9691 2.9921 1.0933 1.0973 0.4908 0.5274 0.6652 0.6666 0.6632 0.6658 0.8340 0.8356
RYW20 3 3 2.9224 2.8151 1.0848 1.0634 0.4931 0.4558 0.6601 0.6456 0.6578 0.6448 0.8075 0.8130
RYW28 3 3 2.9102 2.8245 1.0828 1.0663 0.4522 0.4638 0.6587 0.6467 0.6566 0.6460 0.8227 0.8168
RYW29 3 3 2.8740 2.8909 1.0762 1.0803 0.5739 0.6388 0.6539 0.6548 0.6521 0.6541 0.7935 0.8021
RYW30 4 4 3.0173 2.9609 1.1162 1.0990 0.5380 0.5217 0.6707 0.6631 0.6686 0.6623 0.8307 0.8226
RYW40 3 3 2.7040 2.7078 1.0376 1.0385 0.6095 0.6147 0.6320 0.6314 0.6302 0.6307 0.7453 0.7762
RYW42 3 3 2.9503 2.9008 1.0904 1.0821 0.5944 0.6116 0.6629 0.6560 0.6610 0.6553 0.8119 0.8035
RYW43 3 3 2.5607 2.5420 1.0080 1.0029 0.6080 0.6122 0.6112 0.6073 0.6095 0.6066 0.7538 0.7616
RYW47 3 3 2.7607 2.7934 1.0534 1.0591 0.7849 0.8037 0.6395 0.6427 0.6378 0.6420 0.6493 0.6657
RYW50 3 3 2.9990 2.9975 1.0984 1.0982 0.5395 0.5205 0.6688 0.6672 0.6666 0.6664 0.8223 0.8245
RYW52 3 3 2.2872 2.2977 0.9535 0.9532 0.5868 0.5494 0.5645 0.5654 0.5628 0.5648 0.7468 0.7599
RYW53 3 3 2.9822 2.9776 1.0956 1.0949 0.4326 0.4820 0.6670 0.6651 0.6647 0.6642 0.7931 0.8051
RYW55 3 3 2.9655 2.9109 1.0927 1.0834 0.5385 0.5323 0.6649 0.6573 0.6628 0.6565 0.8253 0.8191
RYW62 3 3 2.7967 2.8045 1.0638 1.0651 0.6628 0.6645 0.6443 0.6441 0.6424 0.6434 0.7774 0.7773
RYW67 3 3 2.7732 2.8980 1.0596 1.0816 0.5148 0.5583 0.6413 0.6557 0.6394 0.6549 0.8114 0.8169
RYW99 3 3 2.4995 2.5108 1.0050 1.0073 0.4765 0.4834 0.6017 0.6024 0.5999 0.6017 0.7887 0.7958
RYW125 3 3 2.8868 2.8902 1.0796 1.0803 0.5723 0.5429 0.6556 0.6548 0.6536 0.6540 0.8132 0.8219
RYW145 3 3 2.9704 2.9767 1.0936 1.0946 0.6312 0.6320 0.6654 0.6649 0.6633 0.6641 0.8154 0.8223
RYW146 3 3 2.9161 2.9046 1.0841 1.0824 0.4324 0.3854 0.6593 0.6566 0.6571 0.6557 0.8156 0.8093
RYW149 3 3 2.5402 2.4947 1.0006 0.9880 0.5756 0.6000 0.6081 0.5998 0.6063 0.5991 0.7617 0.7645
RYW156 3 3 2.9045 2.8552 1.0824 1.0743 0.5893 0.5597 0.6577 0.6505 0.6557 0.6498 0.8085 0.8134
RYW158 3 3 2.8640 2.8123 1.0751 1.0663 0.5098 0.4975 0.6530 0.6452 0.6508 0.6444 0.8139 0.8195
RYW164 3 3 2.9527 2.9776 1.0905 1.0948 0.5765 0.6050 0.6633 0.6649 0.6613 0.6642 0.8128 0.8207
平均Mean 3.0333 3.0333 2.8297 2.8198 1.0667 1.0645 0.5359 0.5399 0.6473 0.6448 0.6452 0.6441 0.7944 0.7974
合计Total 91 91
St.Dev 0.1826 0.1826 0.1704 0.1661 0.0354 0.0350 0.0979 0.1047 0.0238 0.0232 0.0237 0.0232

Table 4

t-test of SSR and population genetic parameters between entire collections and core collections"

t检验
t-test
Na Ne I Ho He Nei PIC
SSR 1.000 0.822 0.806 0.887 0.691 0.847 0.746
群体Group 1.000 0.680 0.614 0.715 0.862 0.658 0.575

Table 5

Genetic diversity parameters of proso millet from different sources"

指标
Index
群体
Group
黑龙江
Heilongjiang
吉林
Jilin
辽宁
Liaoning
内蒙古
Inner Mongolia
Na EC 3.0333±0.1826 3.0000±0.0000 3.0000±0.0000 2.9667±0.1826
CC 3.0333±0.1826 3.0000±0.0000 3.0000±0.0000 2.6333±0.4901
Ne EC 2.7912±0.2025 2.8123±0.1458 2.7715±0.1611 2.4734±0.3518
CC 2.7958±0.1980 2.7720±0.1761 2.7665±0.2072 2.2392±0.3878
I EC 1.0572±0.0465 1.0637±0.0287 1.0551±0.0326 0.9669±0.1148
CC 1.0582±0.0474 1.0560±0.0347 1.0526±0.0457 0.8568±0.1764
Ho EC 0.5442±0.1137 0.5260±0.1182 0.5472±0.1475 0.5165±0.2476
CC 0.5387±0.1178 0.5106±0.1203 0.5576±0.1465 0.5461±0.3237
He EC 0.6410±0.0298 0.6462±0.0196 0.6452±0.0220 0.6157±0.0728
CC 0.6446±0.0292 0.6441±0.0247 0.6484±0.0313 0.6013±0.0923
Nei EC 0.6397±0.0297 0.6434±0.0194 0.6380±0.0215 0.5863±0.0700
CC 0.6403±0.0289 0.6378±0.0242 0.6363±0.0303 0.5400±0.0814
PIC EC 0.7932 0.7896 0.7778 0.6715
CC 0.7805 0.7840 0.7610 0.5572

Fig. 3

Principal coordinate map of the core germplasm and the original species EC: the entire collection; CC: core collection. "

Table 6

Genetic diversity parameters of 8 pairs of SSR primers"

引物Primer Na Ne I Ho He Nei PIC
RYW5 3.0000 2.9335 1.0873 0.3841 0.6613 0.6591 0.8213
RYW8 3.0000 2.7817 1.0559 0.4969 0.6425 0.6405 0.7989
RYW16 3.0000 2.7052 1.0442 0.3643 0.6328 0.6303 0.7701
RYW28 3.0000 2.9053 1.0815 0.4452 0.6579 0.6558 0.8227
RYW40 3.0000 2.7007 1.0368 0.6048 0.6316 0.6297 0.7453
RYW53 3.0000 2.9793 1.0951 0.4317 0.6668 0.6644 0.7931
RYW62 3.0000 2.7981 1.0641 0.6588 0.6445 0.6426 0.7774
RYW67 3.0000 2.7664 1.0585 0.5150 0.6404 0.6385 0.8114
平均Mean 3.0000 2.8213 1.0654 0.4876 0.6472 0.6451 0.7925
合计Total 24
标准差SD 0.0000 0.1054 0.0208 0.1033 0.0132 0.0131

Fig. 4

Principal component analysis of 190 proso millet core germplasms HLJ: Heilongjiang; JL: Jilin; LN: Liaoning; IM: Inner Mongolia."

Fig. 5

Bar code (A) and dimensional code (B) DNA molecular ID of proso millet material 1 variety"

[1] 何杰丽, 石甜甜, 陈凌, 王海岗, 高志军, 杨美红, 王瑞云, 乔治军. 糜子EST-SSR分子标记的开发及种质资源遗传多样性分析. 植物学报, 2019, 54: 723-732.
doi: 10.11983/CBB19037
He J L, Shi T T, Chen L, Wang H G, Gao Z J, Yang M H, Wang R Y, Qiao Z J. The genetic diversity of common millet (Panicum miliaceum) germplasm resources based on the EST-SSR markers. Bull Bot, 2019, 54: 723-732 (in Chinese with English abstract).
[2] 薛延桃, 陆平, 史梦莎, 孙昊月, 刘敏轩, 王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究. 作物学报, 2019, 45: 1511-1521.
doi: 10.3724/SP.J.1006.2019.84174
Xue Y T, Lu P, Shi M S, Sun H Y, Liu M X, Wang R Y. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu. Acta Agron Sin, 2019, 45: 1511-1521 (in Chinese with English abstract).
[3] 王瑞云, 季煦, 陆平, 刘敏轩, 许月, 王纶, 王海岗, 乔治军. 利用荧光SSR分析中国糜子遗传多样性. 作物学报, 2017, 43: 530-548.
doi: 10.3724/SP.J.1006.2017.00530
Wang R Y, Ji X, Lu P, Liu M X, Xu Y, Wang L, Wang H G, Qiao Z J. Analysis of genetic diversity in common millet (Panicum miliaceum) using fluorescent SSR in China. Acta Agron Sin, 2017, 43: 530-548 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00530
[4] 邵欢欢, 陆平, 史梦莎, 王璐琳, 刘敏轩, 王瑞云. 黍稷芽、苗期抗旱性评价及抗旱资源鉴定. 分子植物育种, 2021, 19: 1284-1296.
Shao H H, Lu P, Shi M S, Wang L L, Liu M X, Wang R Y. Evaluation and identification of broomcorn millet resources for drought resistance at germination and seedling stages. Mol Plant Breed, 2021, 19: 1284-1296 (in Chinese with English abstract).
[5] 薛延桃, 陆平, 乔治军, 刘敏轩, 王瑞云. 基于SSR标记的黍稷种质资源遗传多样性及亲缘关系研究. 中国农业科学, 2018, 51: 2846-2859.
doi: 10.3864/j.issn.0578-1752.2018.15.002
Xue Y T, Lu P, Qiao Z J, Liu M X, Wang R Y. Genetic diversity and genetic relationship of broomcorn millet (Panicum miliaceum L.) germplasm based on SSR markers. Sci Agric Sin, 2018, 51: 2846-2859 (in Chinese with English abstract).
[6] 王瑞云. 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社, 2017. pp 20-92.
Wang R Y. Research Progress on Genetic Diversity and Evolution of Proso Millet. Beijing: China Agriculture Press, 2017. pp 20-92 (in Chinese).
[7] 柴岩. 糜子. 北京: 中国农业出版社, 1999. pp 225-229.
Chai Y. Broomcorn Millet. Beijing: China Agriculture Press, 1999. pp 225-229 (in Chinese).
[8] Wang R Y, Hunt H V, Qiao Z J, Wang L, Han Y H. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: a review. Econ Bot, 2016, 70: 332-342.
doi: 10.1007/s12231-016-9357-8
[9] Xu Y, Liu M X, Li C X, Sun F J, Lu P, Meng F S, Zhao X Y, He M Y, Wang F Z, Zhu X Y, Zhao X, Zhou H. Domestication and spread of broomcorn millet (Panicum miliaceum L.) revealed by phylogeography of cultivated and weedy populations. Agronomy, 2019, 9: 835.
doi: 10.3390/agronomy9120835
[10] 孟繁霜. 糜子遗传多样性与栽培起源研究. 吉林大学硕士学位论文, 吉林长春, 2018.
Meng F S. >Research on the Influence of Electroplating Process on Studies on Population Genetics and Domestication of Panicum miliaceum. MS Thesis of Jilin University, Changchun, Jilin, China, 2018 (in Chinese with English abstract).
[11] Boukail S, Macharia M, Miculan M, Masoni A, Calamai A, Palchetti E, Dell’Acqua M. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC Plant Biol, 2021, 21: 330.
doi: 10.1186/s12870-021-03111-5 pmid: 34243721
[12] Kalinova J, Moudry J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr, 2006, 61: 43-47.
doi: 10.1007/s11130-006-0013-9
[13] Li K, Zhang T Z, Narayanamoorthy S, Jin C, Sui Z, Li Z, Li S, Wu K, Liu G, Corke H. Diversity analysis of starch physicochemical properties in 95 proso millet (Panicum miliaceum L.) accessions. Food Chem, 2020, 324: 126863.
doi: 10.1016/j.foodchem.2020.126863
[14] 陈昌文, 曹珂, 王力荣, 朱更瑞, 方伟超. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011, 44: 2081-2093.
doi: 10.3864/j.issn.0578-1752.2011.10.013
Chen C W, Cao K, Wang L R, Zhu G R, Fang W C. Molecular ID establishment of main China peach varieties and peach related species. Sci Agric Sin, 2011, 44: 2081-2093 (in Chinese with English abstract).
[15] 连帅, 陆平, 乔治军, 张琦, 张茜, 刘敏轩, 王瑞云. 利用SSR分子标记研究国内外黍稷地方品种和野生资源的遗传多样性. 中国农业科学, 2016, 49: 3264-3275.
doi: 10.3864/j.issn.0578-1752.2016.17.002
Lian S, Lu P, Qiao Z J, Zhang Q, Zhang Q, Liu M X, Wang R Y. Genetic diversity in broomcorn millet (Panicum miliaceum L.) from China and abroad by using SSR markers. Sci Agric Sin, 2016, 49: 3264-3275 (in Chinese with English abstract).
[16] 王倩, 张立媛, 许月, 李海, 刘少雄, 薛亚鹏, 陆平, 王瑞云, 刘敏轩. 黍稷高基元EST-SSR标记开发及200份核心种质资源遗传多样性分析. 作物学报, 2023, 49: 2308-2318.
doi: 10.3724/SP.J.1006.2023.24201
Wang Q, Zhang L Y, Xu Y, Li H, Liu S X, Xue Y P, Lu P, Wang R Y, Liu M X. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet. Acta Agron Sin, 2023, 49: 2308-2318 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24201
[17] 赵久然, 王凤格, 郭景伦, 陈刚, 廖琴, 孙世贤, 陈如明, 刘龙洲. 中国玉米新品种DNA指纹库建立系列研究: II. 适于玉米自交系和杂交种指纹图谱绘制的SSR核心引物的确定. 玉米科学, 2003, 11(2): 3-5.
Zhao J R, Wang F G, Guo J L, Chen G, Liao Q, Sun S X, Chen R M, Liu L Z. Series of research on establishing DNA fingerprinting pool of Chinese new maize cultivars: II. Confirmation of a set of SSR core primer pairs. J Maize Sci, 2003, 11(2): 3-5 (in Chinese with English abstract).
[18] 董文堂, 邓昌蓉, 侯全刚, 李江, 邵登魁. 辣椒种质资源遗传多样性分析及核心种质构建研究进展. 青海农林科技, 2023, 53(3): 46-49.
Dong W T, Deng C R, Hou Q G, Li J, Shao D K. Research progress on genetic diversity analysis and core collection construction of pepper germplasm resources. Sci Technol Qinghai Agric For, 2023, 53(3): 46-49 (in Chinese with English abstract).
[19] Frankel O H. Genetic Manipulation:Impact on Man and Society. Cambridge University Press, 1984. pp 161-170.
[20] Brown A H D. Core collections: a practical approach to genetic resource management. Genome, 1989, 31: 818-824.
doi: 10.1139/g89-144
[21] Zhang H L, Zhang D L, Wang M X, Sun J L, Qi Y W, Li J J, Wei X H, Han L Z, Qiu Z E, Tang S X, Li Z C. A core collection and mini core collection of Oryza sativa L. in China. Theor Appl Genet, 2011, 122: 49-61.
doi: 10.1007/s00122-010-1421-7
[22] Hintum T J L. Comparison of marker systems and construction of a core collection in a pedigree of European spring barley. Theor Appl Genet, 1995, 89: 991-997.
[23] Upadhyaya H D, Otiz R, Singh S. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Resour Crop Evol, 2003, 50: 139-148.
doi: 10.1023/A:1022945715628
[24] Wang L X, Guan Y, Guan R X, Li Y H, Ma Y S, Dong Z M, Liu X, Zhang H Y, Zhang Y Q, Liu Z X, Chang R Z, Xu H M, Li L H, Lin F Y, Luan W J, Yan Z, Ning X C, Zhu L, Cui Y H, Piao R H, Liu Y, Chen P Y, Qiu L J. Establishment of Chinese soybean (Glycine max) core collections with agronomic traits and SSR markers. Euphytica, 2006, 151: 215-223.
doi: 10.1007/s10681-006-9142-3
[25] 姜俊烨, 杨涛, 王芳, 方俐, 仲伟文, 关建平, 宗绪晓. 国内外蚕豆核心种质SSR遗传多样性对比微核心种质构建. 作物学报, 2014, 40: 1311-1319.
doi: 10.3724/SP.J.1006.2014.01311
Jiang J Y, Yang T, Wang F, Fang L, Zhong W W, Guan J P, Zong X X. Genetic diversity analysis of germplasm resources and construction of mini-core collections for Vicia faba L. at home and abroad. Acta Agron Sin, 2014, 40: 1311-1319 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01311
[26] 王宇卓, 林元香, 薛亚鹏, 段政勇, 王晓丹, 陈凌, 曹晓宁, 王瑞云, 乔治军. 山西糜子核心种质分子身份证构建. 植物学报, 2023, 58: 159-168.
Wang Y Z, Lin Y X, Xue Y P, Duan Z Y, Wang X D, Chen L, Cao X N, Wang R Y, Qiao Z J. Construction of molecular ID card of core germplasm of hog millet (Panicum miliaceum) in Shanxi. Bull Bot, 2023, 58: 159-168 (in Chinese with English abstract).
[27] 王建成, 胡晋, 黄歆贤, 徐盛春. 植物遗传资源核心种质新概念与应用进展. 种子, 2008, 27(5): 47-50.
Wang J C, Hu J, Huang X X, Xu S C. New concept and application of plant genetic resources. Seed, 2008, 27(5): 47-50 (in Chinese with English abstract).
[28] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质. 作物学报, 2023, 49: 1249-1261.
Chen Y H, Tang Z C, Zhang X J, Yao Z F, Jiang B Z, Wang Z Y. Construction of core collection of sweet potato based on phenotypic traits and SSR markers. Acta Agron Sin, 2023, 49: 1249-1261 (in Chinese with English abstract).
[29] 汪磊, 王姣梅, 汪魏, 王玲, 王力军, 严兴初, 谭美莲. 基于表型多样性构建向日葵核心种质. 中国油料作物学报, 2021, 43: 1052-1060.
doi: 10.19802/j.issn.1007-9084.2020255
Wang L, Wang J M, Wang W, Wang L, Wang L J, Yan X C, Tan M L. Development of a core collection in sunflower (Helianthus annuus L.) germplasm using phenotypic diversity. Chin J Oil Crop Sci, 2021, 43: 1052-1060 (in Chinese with English abstract).
[30] 刘松, 聂兴华, 李伊然, 刘海涛, 张卿, 王雪峰, 田寿乐, 曹庆芹, 秦岭, 邢宇. 基于SSR荧光标记构建板栗品种(系)核心种质群. 果树学报, 2023, 40: 230-241.
Liu S, Nie X H, Li Y R, Liu H T, Zhang Q, Wang X F, Tian S L, Cao Q Q, Qin L, Xing Y. Construction of core germplasm collection of Chinese chestnut cultivars (lines) based on SSR fluorescence markers. J Fruit Sci, 2023, 40: 230-241 (in Chinese with English abstract).
[31] 孙永强, 陈建华, 张剑, 董胜君, 刘权钢, 刘青柏. 基于表型性状的西伯利亚杏核心种质构建. 沈阳农业大学学报, 2022, 53(1): 43-54.
Sun Y Q, Chen J H, Zhang J, Dong S J, Liu Q G, Liu Q B. Construction a core collection of Armeniaca sibirica based on phenotypic traits. J Shenyang Agric Univ, 2022, 53(1): 43-54 (in Chinese with English abstract).
[32] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证. 作物学报, 2022, 48: 908-919.
doi: 10.3724/SP.J.1006.2022.14034
Chen X H, Lin Y X, Wang Q, Ding M, Wang H G, Chen L, Gao Z J, Wang R Y, Qiao Z J. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR. Acta Agron Sin, 2022, 48: 908-919 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14034
[33] 秦瑞英, 许学, 张立平, 李莉, 方钰, 汪秀峰, 倪金龙, 陆徐忠, 杨剑波. 小麦SSR指纹图谱及品种身份证的构建: 基于毛细管电泳分析. 中国农学通报, 2017, 33(34): 46-55.
doi: 10.11924/j.issn.1000-6850.casb17010102
Qin R Y, Xu X, Zhang L P, Li L, Fang Y, Wang X F, Ni J L, Lu X Z, Yang J B. Construction of wheat variety SSR fingerprint and ID: based on capillary electrophoresis. Chin Agric Sci Bull, 2017, 33(34): 46-55 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb17010102
[34] 李清, 罗永坚, 吴柔贤, 贾俊婷, 张文虎, 宋松泉, 刘军. 广东省大豆种质资源遗传多样性分析及DNA分子身份证构建. 广东农业科学, 2020, 47(12): 221-228.
Li Q, Luo Y J, Wu R X, Jia J T, Zhang W H, Song S Q, Liu J. Analysis on genetic diversity and construction of DNA molecular identity card of soybean germplasm resources in Guangdong province. Guangdong Agric Sci, 2020, 47(12): 221-228 (in Chinese with English abstract).
[35] 侯丽媛, 董艳辉, 邓舒, 肖蓉, 张春芬, 赵菁, 曹秋芬. 部分苹果属种质遗传多样性分析及分子身份证构建. 山西农业科学, 2020, 48: 1171-1179.
Hou L Y, Dong Y H, Deng S, Xiao R, Zhang C F, Zhao J, Cao Q F. Study on genetic diversity and construction of molecular identity card for some Malus Mill. germplasm resource. J Shanxi Agric Sci, 2020, 48: 1171-1179 (in Chinese with English abstract).
[36] 刘冠群, 吴祠平, 谭礼强, 谭杰, 杨婉君, 唐茜. 利用SSR分子标记构建名山茶树基因身份证. 四川农业大学学报, 2019, 37: 469-474.
Liu G Q, Wu C P, Tan L Q, Tan J, Yang W J, Tang Q. Construction of SSR-based molecular IDs for tea planted in Mingshan. J Sichuan Agric Univ, 2019, 37: 469-474 (in Chinese with English abstract).
[37] 王宇晴, 李乔乔, 阚文亮, 邳植, 吴则东. 利用SSR分子标记构建甜菜登记品种的分子身份证. 江苏农业科学, 2022, 50(18): 289-294.
Wang Y Q, Li Q Q, Kan W L, Pi Z, Wu Z D. Molecular identity cards of sugar beet registration varieties were constructed using SSR molecular markers. Jiangsu Agric Sci, 2022, 50(18): 289-294 (in Chinese with English abstract).
[38] 高源, 刘凤之, 王昆, 王大江, 龚欣, 刘立军. 苹果部分种质资源分子身份证的构建. 中国农业科学, 2015, 48: 3887-3898.
doi: 10.3864/j.issn.0578-1752.2015.19.011
Gao Y, Liu F Z, Wang K, Wang D J, Gong X, Liu L J. Establishment of molecular ID for some apple germplasm resources. Sci Agric Sin, 2015, 48: 3887-3898 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.19.011
[39] 高运来, 朱荣胜, 刘春燕, 李文福, 蒋洪蔚, 李灿东, 姚丙晨, 胡国华, 陈庆山. 黑龙江部分大豆品种分子ID的构建. 作物学报, 2009, 35: 211-218.
doi: 10.3724/SP.J.1006.2009.00211
Gao Y L, Zhu R S, Liu C Y, Li W F, Jiang H W, Li C D, Yao B C, Hu G H, Chen Q S. Establishment of molecular ID in soybean varieties in Heilongjiang, China. Acta Agron Sin, 2009, 35: 211-218 (in Chinese with English abstract).
[40] 马琳, 刘海珍, 陆徐忠, 倪金龙, 张晓娟, 杨剑波. 130份甘蓝型油菜种质分子身份证的构建. 中国油料作物学报, 2013, 35: 231-239.
doi: 10.7505/j.issn.1007-9084.2013.03.001
Ma L, Liu H Z, Lu X Z, Ni J L, Zhang X J, Yang J B. Molecular identity of 130 Brassica napus varieties. Chin J Oil Crop Sci, 2013, 35: 231-239 (in Chinese with English abstract).
[41] 薛亚鹏, 丁艺冰, 王宇卓, 王晓丹, 曹晓宁, Santra Dipak K, 陈凌, 乔治军, 王瑞云. 基于荧光SSR构建中国糜子核心种质DNA分子身份证. 中国农业科学, 2023, 56: 2249-2261.
doi: 10.3864/j.issn.0578-1752.2023.12.002
Xue Y P, Ding Y B, Wang Y Z, Wang X D, Cao X N, Santra Dipak K, Chen L, Qiao Z J, Wang R Y. Construction of DNA molecular identity card of core germplasm of broomcorn millet in China based on fluorescence SSR. Sci Agric Sin, 2023, 56: 2249-2261 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.12.002
[42] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[43] Yeh F C, Boyle T J. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot, 1997, 129: 157.
[44] Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker data. Bioinformatics, 2005, 21: 2128-2129.
doi: 10.1093/bioinformatics/bti282
[45] Tamura K, Stecher G, Kumar S. MEGA11: mevolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120
[46] 胡振帮, 高运来, 齐照明, 蒋洪蔚, 刘春燕, 辛大伟, 胡国华, 潘校成, 陈庆山. 作物分子身份证构建软件ID analysis的编制. 中国农业科学, 2016, 49: 2255-2266.
Hu Z B, Gao Y L, Qi Z M, Jiang H W, Liu C Y, Xin D W, Hu G H, Pan X C, Chen Q S. Software development of ID analysis for crop molecular identity construction. Sci Agric Sin, 2016, 49: 2255-2266 (in Chinese with English abstract).
[47] Essid A, Aljane F, Ferchichi A, Hormaza J I. Analysis of genetic diversity of Tunisian caprifig (Ficus carica L.) accession using simple sequence repeat (SSR) markers. Hereditas, 2015, 152: 1.
doi: 10.1186/s41065-015-0002-9
[48] 何瑞超. 绿豆遗传多样性研究及种子萌发期耐盐性评价. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2021.
He R C. Study on Genetic Diversity of Mung Bean and Evaluation of Salt Tolerance During Seed Germination. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2021 (in Chinese with English abstract).
[49] 马庆国, 宋晓波, 贺君星, 周晔, 黄勇, 张俊佩, 裴东. 基于SSR分子标记的核桃种质资源分子身份证构建. 植物资源与环境学报, 2023, 32(2): 1-9.
Ma Q G, Song X B, He J X, Zhou Y, Huang Y, Zhang J P, Pei D. Establishment of molecular identity cards of walnut (Juglans spp.) germplasm resources based on SSR molecular marker. J Plant Resour Environ, 2023, 32(2): 1-9 (in Chinese with English abstract).
[50] 张馨方, 张树航, 李颖, 郭燕, 王广鹏. 基于SSR标记构建燕山板栗核心种质. 华北农学报, 2021, 36(增刊1): 31-38.
Zhang X F, Zhang S H, Li Y, Guo Y, Wang G P. Construction of core collection of Yanshan chestnut germplasm based on SSR markers. Acta Agric Boreali-Sin, 2021, 36(S1): 31-38 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20192435
[51] 黄雨芹, 尹光天, 杨锦昌, 余纽, 邹文涛, 李荣生. 基于SSR分子标记的闽楠核心种质的构建. 分子植物育种, 2020, 18: 2641-2648.
Huang Y Q, Yin G T, Yang J C, Yu N, Zou W T, Li R S. Developing a mini core germplasm of Phoebe bournei based on SSR molecular marker. Mol Plant Breed, 2020, 18: 2641-2648 (in Chinese with English abstract).
[52] 艾叶, 陈璐, 谢泰祥, 陈娟, 兰思仁, 彭东辉. 基于SSR荧光标记构建建兰品种核心种质. 园艺学报, 2019, 46: 1999-2008.
doi: 10.16420/j.issn.0513-353x.2019-0327
Ai Y, Chen L, Xie T X, Chen J, Lan S R, Peng D H. Construction of core collection of Cymbidium ensifolium cultivars based on SSR fluorescent markers. Acta Hortic Sin, 2019, 46: 1999-2008 (in Chinese with English abstract).
[1] TIAN Chun-Yan, BIAN Xin, LANG Rong-Bin, YU Hua-Xian, TAO Lian-An, AN Ru-Dong, DONG Li-Hua, ZHANG Yu, JING Yan-Fen. Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(2): 310-324.
[2] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[3] WANG Qian, ZHANG Li-Yuan, XU Yue, LI Hai, LIU Shao-Xiong, XUE Ya-Peng, LU Ping, WANG Rui-Yun, LIU Min-Xuan. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet [J]. Acta Agronomica Sinica, 2023, 49(8): 2308-2318.
[4] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[5] LI Ying, LIU Hai-Cui, SHI Lyu, SHI Xiao-Xu, HAN Xiao, LIU Jian, WEI Ya-Feng. Genetic diversity and population structure analysis of naked barley germplasm resources in Jiangsu province [J]. Acta Agronomica Sinica, 2023, 49(10): 2687-2697.
[6] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
[7] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[8] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[9] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[10] TIAN Hong-Li, ZHAO Zi-Wei, YANG Yang, FAN Ya-Ming, BAN Xiu-Li, YI Hong-Mei, YANG Hong-Ming, LIU Shao-Rong, GAO Yu-Qian, LIU Ya-Wei, WANG Feng-Ge. Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin province, China [J]. Acta Agronomica Sinica, 2022, 48(12): 2994-3003.
[11] LI Xiao-Yu, FANG Xiao-Mei, WU Hao-Tian, WANG Ying-Qian, LIU Yang, TANG Tian, WANG Yu-Dong, WU Yin-Huan, YUE Lin-Qing, ZHANG Rui-Feng, CUI Jing-Bin, ZHANG Jian, YI Ze-Lin. Association analysis of agronomic traits of tartary buckwheat germplasm resources with SSR markers [J]. Acta Agronomica Sinica, 2022, 48(12): 3091-3107.
[12] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[13] WANG Qian, LIU Shao-Xiong, CHAI Xiao-Jiao, LI Hai, ZHANG Fen, LU Ping, WANG Rui-Yun, LIU Min-Xuan. Content diversity of phenolic compounds of waxy sorghum grains in different provinces, cities, and autonomous regions of China [J]. Acta Agronomica Sinica, 2022, 48(10): 2505-2516.
[14] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!