Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

QTL mapping of adult plant resistance to stripe rust in the Chinese wheat landrace Canlaomai

XU Xiao-Wei1,FENG Jing1,*,WANG Feng-Tao1,TONG Zhao-Yang1,ZHANG Jian-Zhou2,LI Chun-Ying2,LIN Rui-Ming1,*   

  1. 1 Institute of Plant Protection, Chinese Academy of Agricultural Sciences / State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193, China; 2 Wheat Research Institute, Henan Academy of Agricultural Sciences / Henan Key Laboratory for Wheat Biology, Zhengzhou 450002, Henan, China
  • Received:2025-04-23 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-22
  • Supported by:
    This study was supported by the National Key R & D Program of China (2024YFD1400400) and the Independent Innovation Project of Henan Academy of Agricultural Sciences (2025ZC05).

Abstract:

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a globally important disease that significantly reduces wheat yield and quality. The wheat landrace Canlaomai (CLM), originating from Shaanxi Province, has consistently exhibited stable adult plant resistance (APR) to Pst across multiple years and diverse environments. To identify the genetic basis of this resistance, a recombinant inbred line (RIL) population was developed by crossing CLM with the susceptible cultivar Taichung 29 (T29). Field trials were conducted in Langfang (Hebei) and Chengdu (Sichuan), where both parents and the RIL population were artificially inoculated with Pst. The maximum disease severity (MDS) values showed a continuous distribution, indicating that the resistance is quantitatively inherited. Using bulked segregant analysis (BSA) combined with the wheat 55K SNP array and molecular marker development, we identified a novel APR locus in CLM, designated QYr.CLM-2DS. This locus was mapped to a 7.23 cM genetic interval between markers 32SSR2D-498 and 32SSR2D-523 on chromosome 2DS, explaining 11.41%–13.08% of the phenotypic variation. Comparative analysis of linked markers, genetic, and physical maps indicated that QYr.CLM-2DS is distinct from previously reported resistance genes or QTLs on chromosome 2DS, representing a novel APR locus for wheat stripe rust. This finding provides a valuable genetic resource for improving stripe rust resistance in wheat breeding programs.

Key words: wheat landrace, stripe rust, adult plant resistance, molecular marker, QTL mapping

[1] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818–822.

[2] Chen X M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol, 2005, 27: 314–337.

[3] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46: 4254–4262.

Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013, 46: 4254–4262 (in Chinese with English abstract).

[4] 黄冲, 姜玉英, 李佩玲, 彭红, 崔彦, 杨俊杰, 谢飞舟. 2017年我国小麦条锈病流行特点及重发原因分析. 植物保护, 2018, 44(2): 162–166.

Huang C, Jiang Y Y, Li P L, Peng H, Cui Y, Yang J J, Xie F Z. Epidemics analysis of wheat stripe rust in China in 2017. Plant Prot, 2018, 44(2): 162–166 (in Chinese with English abstract).

[5] Beukert U, Liu G Z, Thorwarth P, Boeven P H G, Longin C F H, Zhao Y S, Ganal M, Serfling A, Ordon F, Reif J C. The potential of hybrid breeding to enhance leaf rust and stripe rust resistance in wheat. Theor Appl Genet, 2020, 133: 2171–2181.

[6] Chen W Q, Wu L R, Liu T G, Xu S C, Jin S L, Peng Y L, Wang B T. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis, 2009, 93: 1093–1101.

[7] Sharma D, Avni R, Gutierrez-Gonzalez J, Kumar R, Sela H N, Prusty M R, Shatil-Cohen A, Molnár I, Holušová K, Said M, et al. A single NLR gene confers resistance to leaf and stripe rust in wheat. Nat Commun, 2024, 15: 9925.

[8] Ellis J G, Lagudah E S, Spielmeyer W, Dodds P N. The past, present and future of breeding rust resistant wheat. Front Plant Sci, 2014, 5: 641.

[9] Ma H. Expression of adult resistance to stripe rust at different growth stages of wheat. Plant Dis, 1996, 80: 375.

[10] Singh R P, Huerta-Espino J, Rajaram S. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Entomol Hung, 2000, 35: 133–139.

[11] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014, 33: 1–14.

[12] Seo J, Lee G, Jin Z, Kim B, Chin J H, Koh H J. Development and application of indica-japonica SNP assays using the Fluidigm platform for rice genetic analysis and molecular breeding. Mol Breed, 2020, 40: 39.

[13] Line R F, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America. Tech Bull, 1992, 1968: 87.

[14] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283.

[15] Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Soft, 2015, 67: 148.

[16] Hill-Ambroz K L, Brown-Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci, 2002, 42: 2088–2091.

[17] Zhou X L, Han D J, Chen X M, Gou H L, Guo S J, Rong L, Wang Q L, Huang L L, Kang Z S. Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet, 2014, 127: 2349–2358.

[18] Chen X M, Line R F, Leung H. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet, 1998, 97: 345–355.

[19] Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J, 1993, 3: 739–744.

[20] Ma D F, Li Q, Tang M S, Chao K X, Li J C, Wang B T, Jing J X. Mapping of gene conferring adult-plant resistance to stripe rust in Chinese wheat landrace Baidatou. Mol Breed, 2015, 35: 157.

[21] Hu C Y, Wang F T, Feng J, Sun C, Guo J Y, Lang X W, Hu J H, Bai B, Zhang W T, Li H J, et al. Identification and molecular mapping of YrBm for adult plan resistance to stripe rust in Chinese wheat landrace Baimangmai. Theor Appl Genet, 2022, 135: 2655–2664.

[22] Zhou L, Liu T, Cheng Y K, Ye X L, Li W, Pu Z E, Jiang Q T, Liu Y X, Wei Y M, Deng M, et al. Molecular mapping of a stripe rust resistance gene in Chinese wheat landrace “Hejiangyizai” using SSR RGAP TRAP and SRAP markers. Crop Prot, 2017, 94: 178–184.

[23] Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1363.

[24] Wang Z, Ren J D, Du Z Y, Che M Z, Zhang Y B, Quan W, Jiang X, Ma Y, Zhao Y, Zhang Z J. Identification of a major QTL on chromosome arm 2AL for reducing yellow rust severity from a Chinese wheat landrace with evidence for durable resistance. Theor Appl Genet, 2019, 132: 457–471.

[25] Jiang X, Wang Z, Feng J, Du Z Y, Zhang Z J, Zhang Y B, Che M Z, Ren J D, Wang H G, Quan W. Mapping and validation of a novel major QTL for resistance to stripe rust in four wheat populations derived from landrace Qishanmai. Front Plant Sci, 2023, 14: 1207764. 

[26] Wu Y, Wang Y Q, Yao F J, Long L, Li J, Li H, Pu Z E, Li W, Jiang Q T, Wang J R, et al. Molecular mapping of a novel quantitative trait locus conferring adult plant resistance to stripe rust in Chinese wheat landrace Guangtoumai. Plant Dis, 2021, 105: 1919–1925.

[27] Worland A J, Petrovic S, Law C N. Genetic analysis of chromosome 2D of wheat. Plant Breed, 1988, 100: 247–259. 

[28] Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard A L, Sourdille P, Dedryver F. Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet, 2005, 110: 1401–1409.

[29] Agenbag G M, Pretorius Z A, Boyd L A, Bender C M, Prins R. Identification of adult plant resistance to stripe rust in the wheat cultivar Cappelle-Desprez. Theor Appl Genet, 2012, 125: 109–120.

[30] Pawar S K, Sharma D, Duhan J S, Saharan M S, Tiwari R, Sharma I. Mapping of stripe rust resistance QTL in Cappelle-Desprez × PBW343 RIL population effective in northern wheat belt of India. 3 Biotech, 2016, 6: 76.

[31] Powell N M, Lewis C M, Berry S T, Maccormack R, Boyd L A. Stripe rust resistance genes in the UK winter wheat cultivar Claire. Theor Appl Genet, 2013, 126: 1599–1612.

[32] Bariana H S, Hayden M J, Ahmed N U, Bell J A, Sharp P J, Mcintosh R A. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res, 2001, 52: 1247.

[33] Suenaga K, Singh R P, Huerta-Espino J, William H M. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology, 2003, 93: 881–890.

[34] Liu S J, Wang X T, Zhang Y Y, Jin Y G, Xia Z H, Xiang M J, Huang S, Qiao L Y, Zheng W J, Zeng Q D, et al. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. Theor Appl Genet, 2022, 135: 351–365.

[35] Eagle J, Liu Y, Naruoka Y, Liu W Z, Ruff T, Hooker M, Sthapit S, Marston E, Marlowe K, Pumphrey M, et al. Identification and mapping of quantitative trait loci associated with stripe rust resistance in spring club wheat cultivar JD. Plant Dis, 2022, 106: 2490–2497.

[36] Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones J D G, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448: 497–500.

[37] Xiao Y Y, Wu X X, Wang Z Q, Ji K X, Zhao Y, Zhang Y, Wan L. Activation and inhibition mechanisms of a plant helper NLR. Nature, 2025, 639: 438–446.

[1] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[2] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[3] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[4] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[5] ZHAN Zong-Bing, JIN Qi-Feng, LIU Di, LYU Ying-Chun, GUO Ying, ZHANG Xue-Ting, HU Meng-Xia, WANG Shang, YANG Fang-Ping. Molecular characterization and evaluation of important traits of landrace wheat Laomangmai in Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(3): 609-620.
[6] YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323.
[7] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[8] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[9] LIU Xin-Yuan, CHENG Yu-Kun, WANG Li-Li, ZHAN Shuai-Shuai, MA Meng-Yao, GUO Ling, GENG Hong-Wei. Allelic variation and distribution of peroxidase activity genes TaPod-A1, TaPod-A3, and TaPod-D1 of wheat in Xinjiang, China [J]. Acta Agronomica Sinica, 2025, 51(1): 68-78.
[10] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[11] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[12] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[13] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[14] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[15] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!