Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Identifying of excellent drought-tolerant gene resources based on drought-tolerant maize inbred line SL001

WEI Qi1,2,HE Guan-Hua2,*,ZHANG Deng-Feng2,LI Yong-Xiang2,LIU Xu-Yang2,TANG Huai-Jun3,LIU Cheng3,WANG Tian-Yu2, LI Yu2,LU Yun-Cai1,*,LI Chun-Hui2   

  1. 1 College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China; 2 State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2025-04-17 Revised:2025-08-13 Accepted:2025-08-13 Published:2025-08-19
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32201751), the China Agriculture Research System of MOF and MARA (CARS-02-03) and the Basic Research Funds for Higher Education Institutions in Heilongjiang Province (2024-KYYWF-0119).

Abstract:

Drought is one of the most severe abiotic stresses limiting the growth and development of maize. Identifying drought-resistant genes and applying them to the development of new drought-tolerant varieties is an effective strategy to address this challenge. In this study, the drought-sensitive inbred line B73 and the drought-tolerant inbred line SL001 were used to evaluate drought tolerance phenotypes. SL001 exhibited a lower degree of wilting and a significantly higher survival rate after rehydration compared to B73. In addition, under drought conditions, SL001 showed significantly higher relative water content and net photosynthetic rate than B73. Transcriptome analysis of B73 and SL001 under varying drought stress conditions identified a total of 11240 differentially expressed genes (DEGs), of which 4354 were specifically expressed under moderate and severe drought stress, but not under well-watered conditions. These DEGs were mainly enriched in plant hormone signaling and plant–pathogen interaction pathways. Among them, two candidate drought-resistance genes, Zm00001eb439810 and Zm00001eb365420, were predicted and further validated by qRT-PCR. The results suggested that Zm00001eb439810 may positively regulate the maize drought stress response, whereas Zm00001eb365420 may act as a negative regulator. This study provides valuable genetic resources and potential targets for improving drought tolerance in maize.

Key words: maize, drought stress, transcriptome analysis, ABA, expression level

[1] Yang Z R, Cao Y B, Shi Y T, Qin F, Jiang C F, Yang S H. Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture. Mol Plant, 2023, 16: 1496–1517.

[2] Yang Z R, Wang C, Zhu T F, He J F, Wang Y J, Yang S P, Liu Y, Zhao B C, Zhu C H, Ye S Q, et al. An LRR-RLK protein modulates drought- and salt-stress responses in maize. J Genet Genom, 2025, 52: 388–399.

[3] Liu H J, Liu J, Zhai Z W, Dai M Q, Tian F, Wu Y R, Tang J H, Lu Y L, Wang H Y, Jackson D, et al. Maize2035: a decadal vision for intelligent maize breeding. Mol Plant, 2025, 18: 313–332.

[4] Liu S X, Li C P, Wang H W, Wang S H, Yang S P, Liu X H, Yan J B, Li B L, Beatty M, Zastrow-Hayes G, et al. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol, 2020, 21: 163.

[5] Zhong Y, Yan X C, Wang N, Zenda T, Dong A Y, Zhai X Z, Yang Q, Duan H J. ZmHB53, a maize homeodomain-leucine zipper I transcription factor family gene, contributes to abscisic acid sensitivity and confers seedling drought tolerance by promoting the activity of ZmPYL4. Plant Cell Environ, 2025, 48: 3829–3843.

[6] Xiang Y, Liu W J, Niu Y X, Li Q, Zhao C Y, Pan Y T, Li G D, Bian X L, Miao Y D, Zhang A Y. The maize GSK3-like kinase ZmSK1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2. Plant Cell, 2025, 37: koaf032.

[7] He F, Niu M X, Wang T, Li J L, Shi Y J, Zhao J J, Li H, Xiang X, Yang P, Wei S Y, et al. The ubiquitin E3 ligase RZFP1 affects drought tolerance in poplar by mediating the degradation of the protein phosphatase PP2C-9. Plant Physiol, 2024, 196: 2936–2955.

[8] Wang Y L, Cheng J K, Guo Y Z, Li Z, Yang S H, Wang Y, Gong Z Z. Phosphorylation of ZmAL14 by ZmSnRK2.2 regulates drought resistance through derepressing ZmROP8 expression. J Integr Plant Biol, 2024, 66: 1334–1350.

[9] Liu L J, Tang C, Zhang Y H, Sha X Y, Tian S B, Luo Z Y, Wei G C, Zhu L, Li Y X, Fu J Y, et al. The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize. New Phytol, 2025, 245: 1985–2003.

[10] Gulzar F, Fu J Y, Zhu C Y, Yan J, Li X L, Meraj T A, Shen Q Q, Hassan B, Wang Q. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis. Int J Mol Sci, 2021, 22: 10080.

[11] Hu X Y, Cheng J K, Lu M M, Fang T T, Zhu Y J, Li Z, Wang X Q, Wang Y, Guo Y, Yang S H, et al. Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize. J Integr Plant Biol, 2024, 66: 1313–1333.

[12] Guo Y Z, Shi Y B, Wang Y L, Liu F, Li Z, Qi J S, Wang Y, Zhang J B, Yang S H, Wang Y, et al. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytol, 2023, 237: 1728–1744.

[13] Dai K, Zhang Z Y, Wang S, Yang J W, Wang L F, Jia T J, Li J J, Wang H, Song S, Lu Y C, et al. Molecular mechanisms of heterosis under drought stress in maize hybrids Zhengdan7137 and Zhengdan7153. Front Plant Sci, 2024, 15: 1487639.

[14] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, . 基于大刍草渗入系的玉米抗旱优异等位基因挖掘. 作物学报, 2024, 50: 1896–1906.

Liu S, Li S, Wang D M, Sha X Q, He G H, Zhang D F, Li Y X, Liu X Y, Wang T Y, Li Y, et al. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte. Acta Agron Sin, 2024, 50: 1896–1906 (in Chinese with English abstract).

[15] Wei S W, Xia R, Chen C X, Shang X L, Ge F Y, Wei H M, Chen H B, Wu Y R, Xie Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnol J, 2021, 19: 2069–2081.

[16] Xiang Y, Li G D, Li Q, Niu Y X, Pan Y T, Cheng Y, Bian X L, Zhao C Y, Wang Y H, Zhang A Y. Autophagy receptor ZmNBR1 promotes the autophagic degradation of ZmBRI1a and enhances drought tolerance in maize. J Integr Plant Biol, 2024, 66: 1068–1086.

[17] Li Y P, Su Z J, Lin Y N, Xu Z H, Bao H Z, Wang F G, Liu J, Hu S P, Wang Z G, Yu X F, et al. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress. BMC Plant Biol, 2024, 24: 34.

[18] Gu L, Chen X X, Hou Y Y, Cao Y Y, Wang H C, Zhu B, Du X Y, Wang H N. ZmWRKY30 modulates drought tolerance in maize by influencing myo-inositol and reactive oxygen species homeostasis. Physiol Plant, 2024, 176: e14423.

[19] Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol J, 2022, 20: 143–157.

[20] Li D, Wang H Q, Luo F S, Li M R, Wu Z Q, Liu M Y, Wang Z, Zang Z Y, Jiang L Y. A maize calmodulin-like 3 gene positively regulates drought tolerance in maize and Arabidopsis. Int J Mol Sci, 2025, 26: 1329.

[21] He Z H, Wu J F, Sun X P, Dai M Q. The maize clade A PP2C phosphatases play critical roles in multiple abiotic stress responses. Int J Mol Sci, 2019, 20: 3573.

[22] Li P C, Zhu T Z, Wang Y Y, Zhang X M, Yang X Y, Fang S, Li W, Rui W Y, Yang A Q, Duan Y M, et al. Natural variation in a cortex/epidermis-specific transcription factor bZIP89 determines lateral root development and drought resilience in maize. Sci Adv, 2025, 11: eadt1113.

[23] Chong L, Xu R, Huang P C, Guo P C, Zhu M K, Du H, Sun X L, Ku L X, Zhu J K, Zhu Y F. The tomato OST1-VOZ1 module regulates drought-mediated flowering. Plant Cell, 2022, 34: 2001–2018.

[24] Fàbregas N, Yoshida T, Fernie A R. Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nat Commun, 2020, 11: 6184.

[25] Du C, Bai H Y, Yan Y J, Liu Y R, Wang X Y, Zhang Z H. Exploring ABI5 regulation: Post-translational control and cofactor interactions in ABA signaling. Plant J, 2025, 121: e17232.

[26] Li G J, Chen K, Sun S J, Zhao Y. Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1. EMBO J, 2024, 43: 6076–6103.

[27] Xiong Y L, Song X Y, Mehra P, Yu S H, Li Q Y, Tashenmaimaiti D, Bennett M, Kong X Z, Bhosale R, Huang G Q. ABA-auxin cascade regulates crop root angle in response to drought. Curr Biol, 2025, 35: 542–553.

[28] Hasan M M, Liu X D, Waseem M, Yao G Q, Alabdallah N M, Jahan M S, Fang X W. ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. Plant Signal Behav, 2022, 17: 2071024.

[29] Song J, Sun P P, Kong W N, Xie Z Z, Li C L, Liu J H. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. New Phytol, 2023, 238: 216–236.

[30] Qin C H, Fan X, Fang Q Q, Ni L, Jiang M Y. The CBL-interacting protein kinase OsCIPK1 phosphorylated by SAPK10 positively regulates responses to ABA and osmotic stress in rice. Crop J, 2024, 12: 364–374.

[31] Li X X, Yu B, Wu Q, Min Q, Zeng R F, Xie Z Z, Huang J L. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genet, 2021, 17: e1009699.

[32] Wu Q, Liu Y F, Xie Z Z, Yu B, Sun Y, Huang J L. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Plant Physiol, 2022, 189: 1296–1313.

[33] Bae Y, Lim C W, Lee S C. Pepper stress-associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid-dependent osmotic stress responses. Plant J, 2023, 113: 357–374.

[34] Lan G, Ma W F, Nai G J, Liang G P, Lu S X, Ma Z H, Mao J, Chen B H. Grape SnRK2.7 positively regulates drought tolerance in transgenic Arabidopsis. Int J Mol Sci, 2024, 25: 4473.

[35] Lu F Z, Li W C, Peng Y L, Cao Y, Qu J T, Sun F A, Yang Q Q, Lu Y L, Zhang X H, Zheng L J, et al. ZmPP2C26 alternative splicing variants negatively regulate drought tolerance in maize. Front Plant Sci, 2022, 13: 851531.

[36] Wang J Y, Li C N, Li L, Gao L F, Hu G, Zhang Y F, Reynolds M P, Zhang X Y, Jia J Z, Mao X G, et al. DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat. J Integr Plant Biol, 2023, 65: 1918–1936.

[37] Zhai Z K, Ao Q Q, Yang L Q, Lu F X, Cheng H K, Fang Q X, Li C, Chen Q Q, Yan J L, Wei Y S, et al. Rapeseed PP2C37 interacts with PYR/PYL abscisic acid receptors and negatively regulates drought tolerance. J Agric Food Chem, 2024, 72: 12445–12458.

[38] Zhu C G, Jing B Y, Lin T, Li X Y, Zhang M, Zhou Y H, Yu J Q, Hu Z J. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. Plant Physiol, 2024, 195: 1005–1024.

[39] Ma X, Li Y, Gai W X, Li C, Gong Z H. The CaCIPK3 gene positively regulates drought tolerance in pepper. Hortic Res, 2021, 8: 216.

[40] Li T, Zhou X N, Wang Y X, Liu X Q, Fan Y D, Li R Q, Zhang H Y, Xu Y F. AtCIPK20 regulates microtubule stability to mediate stomatal closure under drought stress in Arabidopsis. Plant Cell Environ, 2024, 47: 5297–5314.

[41] Nguyen K H, Ha C V, Nishiyama R, Watanabe Y, Leyva-González M A, Fujita Y, Tran U T, Li W Q, Tanaka M, Seki M, et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci USA, 2016, 113: 3090–3095

[1] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[2] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[3] XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990.
[4] WANG Ke-Jing, LI Xiang-Hua. Endangerment assessment of the perennial species G. tabacina and G. tomentella of the genus Glycine Willd. in China [J]. Acta Agronomica Sinica, 2025, 51(8): 2009-2019.
[5] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[6] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[7] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[8] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[9] YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581.
[10] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[11] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[12] JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388.
[13] ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399.
[14] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[15] MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!