Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Csp2 gene of Deinococcus gobiensis improves drought tolerance in maize

XU Yi-Wei1,2,ZHANG Ying-Ying2,LI Rui2,YAN Yong-Liang3,LIU Yun-Jun2,KONG Zhao-Sheng1,*,ZHENG Jun2,*,WANG Yi-Ru2,*   

  1. 1 Shanxi Agricultural University, Jinzhong 030600, Shanxi, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;3 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2025-02-18 Revised:2025-04-25 Accepted:2025-04-25 Published:2025-05-09
  • Supported by:
    This study was supported by the National Key R&D Program of China (2023YFD1200500) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01D87).

Abstract: The csp2 gene, derived from Deinococcus gobiensis, is known for its strong resistance to environmental stressors such as gamma radiation, UV light, and drought. In this study, the csp2 gene was codon-optimized for plant expression, synthesized, and inserted into the plant expression vector p3301-csp2, which was subsequently introduced into maize. The drought tolerance of the csp2 transgenic lines was evaluated at both the seedling and adult stages. Under drought conditions, the csp2 overexpression lines exhibited significantly enhanced drought tolerance at the seedling stage compared to wild-type plants, as evidenced by higher relative water content and markedly reduced electrolyte leakage, malondialdehyde (MDA) levels, and hydrogen peroxide (H2O2) accumulation. At the adult stage, drought stress assessments demonstrated that csp2 expression increased ear length and single-ear weight, resulting in significantly higher yields in transgenic lines compared to the wild type. Transcriptome analysis revealed that csp2 enhances drought tolerance by modulating the expression of genes involved in the jasmonic acid signaling pathway, drought-responsive kinases, and the WRKY and ERF transcription factor families. These findings suggest that heterologous expression of Deinococcus gobiensis csp2 significantly improves drought tolerance in maize, making csp2 a promising candidate gene for drought-resilient crop breeding.

Key words: csp2, Deinococcus gobiensis, transgenic maize, drought tolerance, RNA-seq

[1] Liu S L, Xiao L J, Sun J, Yang P, Yang X G, Wu W B. Probability of maize yield failure increases with drought occurrence but partially depends on local conditions in China. Eur J Agron, 2022, 139: 126552.

[2] 贾双杰, 李红伟, 江艳平, 赵国强, 王和洲, 杨慎骄, 杨青华, 郭家萌, 邵瑞鑫. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40: 854–863.

Jia S J, Li H W, Jiang Y P, Zhao G Q, Wang H Z, Yang S J, Yang Q H, Guo J M, Shao R X. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecol Sin, 2020, 40: 854–863 (in Chinese with English abstract).

[3] Sah R P, Chakraborty M, Prasad K, Pandit M, Tudu V K, Chakravarty M K, Narayan S C, Rana M, Moharana D. Impact of water deficit stress in maize: phenology and yield components. Sci Rep, 2020, 10: 2944.

[4] 张慧颖, 王颖, 韩成贵. 转基因技术在中国主要粮食作物改良中的研究进展. 农学学报, 2022, 12(10): 4450.

Zhang H Y, Wang Y, Han C G. Progress of transgenic technology in improving staple food crops in China. J Agric, 2022, 12(10): 44–50 (in Chinese with English abstract).

[5] Wang B M, Li Z X, Ran Q J, Li P, Peng Z H, Zhang J R. ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Front Plant Sci, 2018, 9: 709.

[6] Zhang P Y, Yuan Z, Wei L, Qiu X, Wang G R, Liu Z X, Fu J X, Cao L R, Wang T C. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Sci, 2022, 314: 111127.

[7] Tian T, Wang S H, Yang S P, Yang Z R, Liu S X, Wang Y J, Gao H J, Zhang S S, Yang X H, Jiang C F, et al. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat Genet, 2023, 55: 496–506.

[8] Yuan M L, Chen M, Zhang W, Lu W, Wang J, Yang M K, Zhao P, Tang R, Li X N, Hao Y H, et al. Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations. PLoS One, 2012, 7: e34458.

[9] Yuan M L, Zhang W, Dai S M, Wu J, Wang Y D, Tao T S, Chen M, Lin M. Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol, 2009, 59: 1513–1517.

[10] 江世杰, 杨明坤, 陈明, 张维, 王劲, 罗学刚. 戈壁异常球菌冷激蛋白Csp1提高大肠杆菌盐胁迫抗性. 核农学报, 2013, 27: 533–538.

Jiang S J, Yang M K, Chen M, Zhang W, Wang J, Luo X G. Deinococcus gobiensis cold shock protein improves salt stress tolerance of Escherichia coli. J Nucl Agric Sci, 2013, 27: 533–538 (in Chinese with English abstract).

[11] 张亨, 刘盈盈, 陈云, 平淑珍, 王劲. 戈壁异常球菌Dgl5蛋白生物学功能研究. 生物技术通报, 2018, 34(3): 177–184.

Zhang H, Liu Y Y, Chen Y, Ping S Z, Wang J. Biological identification of Dgl5 in Deinococcus gobiensis I-0. Biotechnol Bull, 2018, 34(3): 177–184 (in Chinese with English abstract).

[12] 杨明坤. 戈壁异常球菌Ⅰ-0冷激蛋白的功能鉴定及异源表达. 中国农业科学院硕士学位论文, 北京, 2011.

Yang M K. Functional Identification and Heterologous Expression of Cold Shock Proteins in Deinococcus gobiensis Ⅰ-0. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2011 (in Chinese with English abstract).

[13] 孙雪慧, 蔡勤安, 尚丽霞, 马瑞, 杨向东, 于志晶, 魏建. 耐旱基因cspB转化大豆的研究. 大豆科学, 2017, 36: 699–704.

Sun X H, Cai Q A, Shang L X, Ma R, Yang X D, Yu Z J, Wei J. Genetic transformation of soybean with drought tolerance gene cspB from Bacillus subtilis. Soybean Sci, 2017, 36: 699–704 (in Chinese with English abstract).

[14] Yu T F, Xu Z S, Guo J K, Wang Y X, Abernathy B, Fu J D, Chen X, Zhou Y B, Chen M, Ye X G, et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Sci Rep, 2017, 7: 44050.

[15] 谢琳, 代其林, 王劲. PEG模拟干旱胁迫下非转基因和转csp2基因油菜种子萌发期抗旱性评价. 绵阳师范学院学报, 2014, 33(8): 78–82.

Xie L, Dai Q L, Wang J. Evaluation of drought resistance of transgenic and non- transgenic at seed germination stage under PEG-6000 stress. J Mianyang Norm Univ, 2014, 33(8): 78–82 (in Chinese with English abstract).

[16] Castiglioni P, Warner D, Bensen R J, Anstrom D C, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water–limited conditions. Plant Physiol, 2008, 147: 446–455.

[17] Wang X D, Guo Y H, Wang Y R, Peng Y L, Zhang H W, Zheng J. ZmHDT103 negatively regulates drought stress tolerance in maize seedlings. Agronomy, 2024, 14: 134.

[18] Barrs H D, Weatherley P E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust Jnl Bio Sci, 1962, 15: 413.

[19] Zhou W J, Leul M. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul, 1998, 26: 41–47.

[20] Chalmel F, Lardenois A, Thompson J D, Muller J, Sahel J A, Léveillard T, Poch O. GOAnno: GO annotation based on multiple alignment. Bioinformatics, 2005, 21: 2095–2096.

[21] Lobell D B, Deines J M, Tommaso S D. Changes in the drought sensitivity of US maize yields. Nat Food, 2020, 1: 729–735.

[22] Leng G Y, Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ, 2019, 654: 811–821.

[23] 晏胜伟, 孙程, 周晓今, 陈茹梅. 玉米JAZ家族基因ZmJAZ4的克隆及功能分析. 生物技术通报, 2015, 31(3): 96–101.

Yan S W, Sun C, Zhou X J, Chen R M. Cloning and characterization analysis of ZmJAZ4, a JAZ family gene in maize (Zea mays L.). Biotechnol Bull, 2015, 31(3): 96–101 (in Chinese with English abstract).

[24] Li Z C, Luo X, Ou Y, Jiao H J, Peng L, Fu X, Macho A P, Liu R Y, He Y H. JASMONATE-ZIM DOMAIN proteins engage Polycomb chromatin modifiers to modulate Jasmonate signaling in Arabidopsis. Mol Plant, 2021, 14: 732–747.

[25] 李敏, 伍国强, 魏明, 刘晨. 植物CDPK在响应逆境胁迫中的作用及机制. 生物工程学报, 2024, 40: 3337–3359.
Li M, Wu G Q, Wei M, Liu C. Functions and mechanisms of CDPKs in plant responses to abiotic stress. Chin J Biotechnol, 2024, 40: 3337–3359 (in Chinese with English abstract).

[26] Hu X Y, Cheng J K, Lu M M, Fang T T, Zhu Y J, Li Z, Wang X Q, Wang Y, Guo Y, Yang S H, et al. Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize. J Integr Plant Biol, 2024, 66: 1313–1333.

[27] Jiang S S, Zhang D, Wang L, Pan J W, Liu Y, Kong X P, Zhou Y, Li D Q. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2013, 71: 112–120.

[28] Xu J, Tian Y S, Peng R H, Xiong A S, Zhu B, Jin X F, Gao F, Fu X Y, Hou X L, Yao Q H. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta, 2010, 231: 1251–1260.

[29] Kim M J, Park M J, Seo P J, Song J S, Kim H J, Park C M. Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. Biochem J, 2012, 448: 353–363.

[30] 张中保, 李向龙, 吴忠义, 魏建华. 玉米1, 3, 4-三磷酸肌醇5/6激酶ITPK家族基因的鉴定和分析. 科技导报, 2015, 33(16): 46–50.

Zhang Z B, Li X L, Wu Z Y, Wei J H. Genome-wide analysis and identification of inositol 1, 3, 4-trisphosphate 5/6-kinase gene family in maize (Zea mays L.). Sci Technol Rev, 2015, 33(16): 46–50 (in Chinese with English abstract).

[31] Zhang Z B, Li X L, Yu R, Han M, Wu Z Y. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family. Mol Genet Genomics, 2015, 290: 1849–1858.

[32] Zhou X J, Yan S W, Sun C, Li S Z, Li J, Xu M Y, Liu X Q, Zhang S J, Zhao Q Q, Li Y, et al. A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One, 2015, 10: e0121824.

[33] 黄幸, 丁峰, 彭宏祥, 潘介春, 何新华, 徐炯志, 李琳. 植物WRKY转录因子家族研究进展. 生物技术通报, 2019, 35(12): 129–143.

Huang X, Ding F, Peng H X, Pan J C, He X H, Xu J Z, Li L. Research progress on family of plant WRKY transcription factors. Biotechnol Bull, 2019, 35(12): 129–143 (in Chinese with English abstract).

[34] 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 1–7.

Zhang Q, Chen J, Li L, Zhao M Z, Zhang M P, Wang Y. Research progress on plant AP2/ERF transcription factor family. Biotechnol Bull, 2018, 34(8): 1–7 (in Chinese with English abstract).

[35] 赵双, 尤伟忠, 汪溢, 郄红丽. 基于转录组分析枇杷响应干旱胁迫的分子机制. 江苏农业科学, 2024, 52(17): 27–34.

Zhao S, You W Z, Wang Y, Qie H L. Analysis of molecular mechanism of Eriobotrya japonica response to drought stress based on transcriptome. Jiangsu Agricultural Sciences, 2024, 52(17): 27–34 (in Chinese).

[36] Yang Z, Chi X Y, Guo F F, Jin X Y, Luo H L, Hawar A, Chen Y X, Feng K K, Wang B, Qi J L, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in Sorghum. J Plant Physiol, 2020, 246/247: 153142.

[37] Wang X T, Zeng J, Li Y, Rong X L, Sun J T, Sun T, Li M, Wang L Z, Feng Y, Chai R H, et al. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci, 2015, 6: 615.

[38] Wang Z Y, Zhao X, Ren Z Z, Abou-Elwafa S F, Pu X Y, Zhu Y F, Dou D D, Su H H, Cheng H Y, Liu Z X, et al. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312–328.

[39] Wang C T, Ru J N, Liu Y W, Yang J F, Li M, Xu Z S, Fu J D. The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci, 2018, 19: 2580.

[40] 吴永波郝转芳王楠宋洁, 周跃恒, 柳波娟, 朱汉勇, 邸宏, 王振华, 李新海玉米雄穗发育早期耐旱相关转录因子的发掘华北农学报, 2018, 33(4): 1–8.

Wu Y B, Hao Z F, Wang N, Song J, Zhou Y H, Liu B J, Zhu H Y, Di H, Wang Z H, Li X H. The identification of drought tolerance-related transcription factors in early developing tassel of maize. Acta Agric Boreali-Sin, 2018, 33(4): 1–8 (in Chinese with English abstract).

[41] Filyushin M A, Kochieva E Z, Shchennikova A V. ZmDREB2.9 gene in maize (Zea mays L.): genome-wide identification, characterization, expression, and stress response. Plants, 2022, 11: 3060.

[42] Ren X Z, Chen Z Z, Liu Y, Zhang H R, Zhang M, Liu Q, Hong X H, Zhu J K, Gong Z Z. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J, 2010, 63: 417–429.

[43] Cheng M C, Hsieh E J, Chen J H, Chen H Y, Lin T P. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol, 2012, 158: 363–375.

[44] Lei L, Pan H, Hu H Y, Fan X W, Wu Z B, Li Y Z. Characterization of ZmPMP3g function in drought tolerance of maize. Sci Rep, 2023, 13: 7375.

[1] FANG Ying-Hao, ZHOU Bo, CHEN Ru-Mei, YANG Wen-Zhu, QIN Hui-Min. Integrative analysis of RNA-seq and PER-seq to elucidate regulatory network of ZmHDZ6 expression [J]. Acta Agronomica Sinica, 2025, 51(4): 958-968.
[2] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[3] LI Jia-Xin, HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing. Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(1): 44-57.
[4] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[5] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[6] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[7] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[8] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[9] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[10] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[11] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
[12] YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531.
[13] ZHAO Dong-Lan, ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He. Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data [J]. Acta Agronomica Sinica, 2023, 49(12): 3239-3249.
[14] GONG Hui-Ling, LIN Hong-Xia, REN Xiao-Li, LI Tong, WANG Chen-Xia, BAI Jiang-Ping. StvacINV1 negatively regulates drought tolerance in potato [J]. Acta Agronomica Sinica, 2023, 49(11): 3007-3016.
[15] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!